
Convolutional Networks
 Chapter 9 (9.1-9.4)

 Presenter: Ani Karapetyan

 January 12, 2021

MA-INF 4209 - Seminar Principles of Data mining and Learning Algorithms

https://www.deeplearningbook.org/contents/convnets.html

 Convolutional Networks / Motivation

● Convolutional networks (CNNs) are neural networks that use

convolution in place of general matrix multiplication in at least one

of the layers.

● Convolutional models preserve the spatial structure of the input

unlike fully-connected (FC) models which flattens the input.

● Dedicated for processing data with grid-like topology:

➢ Time-series data - 1D grid of samples at regular time intervals.

➢ Image data - 2D grid of pixels.

● Very popular in modern Computer vision and NLP applications.

2

 The Convolution Operation

● Continuous case: Given x(t) and w(t) with real-valued arguments (e.g. Fig. 1):

Feature map
Input

Kernel

Fig. 1: Convolving a box signal with itself [source]

● Discrete case: Given x(t) and w(t) with integer-valued arguments:

3

Finite sum in practice

https://en.wikipedia.org/wiki/Convolution#/media/File:Convolution_of_box_signal_with_itself2.gif

 The Convolution Operation

● 2D case (convolving a 2D kernel K over an input image I):

● Convolution is commutative (because of flipped kernel):

● Cross-correlation:

4

 2D Convolution Example

Example: Convolution of an input image with a 2D Kernel (Fig. 2).

Fig. 2: Convolution with 3x3 kernel [source]

5

http://www.wildml.com/2015/11/understanding-convolutional-neural-networks-for-nlp/

 Famous Convolution Kernels
Convolution is used for feature extraction in image processing.

➢ Gaussian blur kernel:

➢ Sharpen kernel:

➢ Right sobel kernel:

6

Fig. 3: Examples of image kernels [source].

https://setosa.io/ev/image-kernels/

 Convolution Implementation as Matrix Multiplication

Discrete convolution can be implemented as matrix multiplication:
➢ Example (1D case):

➢ Example (2D case):

Toeplitz matrix

7

Doubly-block Toeplitz matrix

 Convolutional layer structure

A typical convolutional layer consists of 3 stages:
➢ Convolution of input with several filters

in parallel.
➢ Non-linear activation function (e.g. ReLU).
➢ Pooling (max, average, L2 norm, etc).

Fig. 4: General CNN architecture for object recognition [source].

Convolution stage:
● Input: 3D tensor of shape

W x H x C.
● Parameters: weights of 3D

learnable filters.
● Output: set of 2D activation

maps (activ. map per filter)
stacked together along the
depth dimension.

8

Fig. 5: Convolution with 6 5x5 filters [source].

https://cs231n.github.io/convolutional-networks/
https://cs231n.github.io/convolutional-networks/

 Convolutional layer properties

● Convolution introduces 3 key advantages over fully connected layers:

➢ Sparse interactions

➢ Parameter sharing

➢ Translation equivariance

● Convolution allows to work with inputs of variable size.

➢ Vary the stride of convolution or pooling or use global pooling.

➢ Scales well to large input sizes.

9

● In FC layer, every output unit interacts with

every input unit (Fig. 6, below diagram):
➢ m*n parameters, O(m*n) runtime!

❖ m - number of input neurons

❖ n - number of output neurons

● Convolutional layers have sparse connectivity

(Fig. 6, above diagram), by making the kernel

much smaller than the input:

➢ k*n parameters, O(k*n) runtime!

❖ k - kernel size

❖ n - number of output neurons
Fig. 6: Sparse connectivity [1, Fig. 9.2]

 Convolution / Sparse interactions

10

http://deeplearning.stanford.edu/wiki/index.php/Feature_extraction_using_convolution

Fig. 7: Receptive field [1, Fig. 9.4]

● CNNs build complex interactions between different units by

stacking simple building blocks of sparse connectivity.

● Units in deeper layers indirectly interact with larger parts of input.

➢ Larger receptive field (Fig. 7).

 Convolution / Sparse interactions

11

http://deeplearning.stanford.edu/wiki/index.php/Feature_extraction_using_convolution

 Convolution / Parameter Sharing

Fig. 8: Parameter sharing [1, Fig. 9.5]

Convolutional layers have tied weights - kernel weights are shared

across the input (Fig. 8).

➢ k parameters (k << m*n) => reduced memory!

➢ O(k*n) runtime (as before).

12

http://deeplearning.stanford.edu/wiki/index.php/Feature_extraction_using_convolution

 Example: Efficiency of edge detection

● K = [1, -1] - vertical edge detection kernel.

● Input size: 280x320.
● Output size: 280x319.

Fig. 9: Vertical edge detection by convolution [1, Fig. 9.6]

Convolution Fully connected
(full matrix multiplication)

Number of stored weights (floats) 2 319*280*320*280 > 8e9

Floating point operations
(addition, multiplication)

319*280*3 = 267960 319*280*320*280*2 > 16e9

13

http://deeplearning.stanford.edu/wiki/index.php/Feature_extraction_using_convolution

 Convolution / Translation Equivariance

➢ F(T(Im)) = T(F(Im))
❖ T - translates the input

by one pixel to the

right:
T(Im)(x, y) = Im(x-1, y)

❖ F - convolution

operation in this case.

● Convolution is equivariant to translation!

● Convolution is not equivariant to image scaling and rotation!

Fig. 10: Illustration of translation equivariance property [source].

14

T(Im)

F(Im) F(T(Im))

T(F(Im))

https://towardsdatascience.com/translational-invariance-vs-translational-equivariance-f9fbc8fca63a#:~:text=Translational%20Equivariance%20or%20just%20equivariance,changes%2C%20the%20output%20also%20changes

 Pooling
● Combines the output of several neighboring units (from a

rectangular region) into a summary statistic at that location.
➢ Max (Fig. 11), Average, L2 norm.
➢ Weighted average based on distance from central pixel.

Fig. 11: Max pooling with 2x2 filter [source].
15

● Can progressively reduce spatial size of the input (downsampling).
➢ Reduced number of parameters and computation.
➢ Overfitting control.

https://cs231n.github.io/convolutional-networks/

 Pooling

Fig. 12: Max pooling introduces invariance. [1, Fig. 9.8]

● Pooling achieves approximate invariance to small translations (Fig. 12)!
➢ Useful if we care more about the presence of a specific feature

than its exact location.

16

http://deeplearning.stanford.edu/wiki/index.php/Feature_extraction_using_convolution

 Pooling

● Pooling units over different channels of convolution output (with multiple
filters) can learn to become invariant to different transformations other
than simple translation.

Fig. 13: Example of learned invariances. [1, Fig. 9.9]

17

➢ Example: Learnt invariance to small rotations (Fig. 13).

http://deeplearning.stanford.edu/wiki/index.php/Feature_extraction_using_convolution

 Pooling

● Pooling is useful in handling inputs of variable size.

➢ Adapt the pooling stride s.t. the FC layer (e.g. classification layer)

always gets the same number of summary statistics.

➢ Use global pooling before FC layer to transform a tensor of shape

W x H x C to tensor of shape 1 x 1 x C, regardless of the input size.

18

 Convolution and Pooling as Infinitely Strong Prior

● Strength of the prior depends on how concentrated the probability

density is.

➢ How much evidence the model needs to see until it deviates from

the prior assumptions about its parameters.

● Convolutional layer is a FC layer with an infinitely strong prior on its

weights!

➢ Most of the weights in the matrix are constrained to be 0.

➢ Weights for one hidden unit must be the same as the weights of its

neighbor shifted in space.

● Pooling puts an infinitely strong prior that each unit should be invariant

to small translations!

19

 Convolution and Pooling as Infinitely Strong Prior

● Convolution and pooling can cause underfitting!

➢ If precise spatial information is relevant, pooling can increase

training error.

➢ When it's important to incorporate features from distant locations

in the input, convolution may be inappropriate.

● We should only compare convolutional models to other convolutional

models!

➢ Non-convolutional models can learn even if we permute all the

pixels in the image - they learn the concept of topology via training.

20

 References

[1] I. Goodfellow, Y. Bengio and A. Courville: Deep Learning, MIT Press, 2016.
[2] Y. Boureau et al: Ask the locals: multi-way local pooling for image recognition,
2011.
[3] Y. Jia et al: Beyond spatial pyramids: Receptive field learning for pooled image
features, 2012.
[4] https://cs231n.github.io/convolutional-networks
[5] https://towardsdatascience.com/how-are-convolutions-actually-performed-
 under-the-hood-226523ce7fbf

21

https://www.deeplearningbook.org/front_matter.pdf
https://cs231n.github.io/convolutional-networks/#layerpat
https://towardsdatascience.com/how-are-convolutions-actually-performed-under-the-hood-226523ce7fbf
https://towardsdatascience.com/how-are-convolutions-actually-performed-under-the-hood-226523ce7fbf

Convolutional Networks

Seminar Principles of Data Mining and Learning Algorithms
University Bonn

Nils Becker

January 12, 2021

Nils Becker Convolutional Networks January 12, 2021 1 / 16

Variants of the Basic Convolution Function

Variants of the Basic Convolution Function

In practice, the used convolution differs from the usual definition slightly.

many convolutions in parallel to extract many features

multichannel convolution
I e.g. images with channels for red, green, blue
I leads to 3-D tensors

skipping positions to reduce the computational cost

Nils Becker Convolutional Networks January 12, 2021 2 / 16

Variants of the Basic Convolution Function Multichannel Convolution

Multichannel Convolution

We can think about the input, not as a grid, with real values rather than a
grid of vectors.

Definition

Let Z be a 3-D tensor, let V be our input with the same shape like Z and
K our kernel, a 4-D tensor. The value of an output unit Zi ,j ,k , with
i=channel, j=row, k=column is given by:

Zi ,j ,k =
∑
l ,m,n

Vl−1,j+m−1,k+n−1Ki ,l ,m,n

where l ,m, n are values for which the tensor indexing is valid.

For simplicity, the above formula requires that Z and V has the same
shape. In general, this is not required, we can have more or less channels
in the output than on the input.

Nils Becker Convolutional Networks January 12, 2021 3 / 16

Variants of the Basic Convolution Function Multichannel Convolution

Figure: Example for 1x1 Cross-Correlation with three input channels and two
output channels. Each output channel has its own kernel, such that the overall
kernel is a 4-D Tensor [1].

Nils Becker Convolutional Networks January 12, 2021 4 / 16

Variants of the Basic Convolution Function Strided Convolution

Strided Convolution
When using the strided convolution, some positions are skipped. This
leads to a reduced amount of computation. A strided convolution equals a
normal one followed by downsampling.

Figure: Example for a strided convolution of size 2 [2, P. 350].

Nils Becker Convolutional Networks January 12, 2021 5 / 16

Variants of the Basic Convolution Function Zero Padding

Zero Padding
Convolution shrinks the size of the output by one less than the kernel
width. This limits the number of possible layers. To avoid this, we can fill
up the input with zeros.

Figure: Left: Valid convolution. Middle: Same convolution. Right: Full
convolution [3]

Nils Becker Convolutional Networks January 12, 2021 6 / 16

Variants of the Basic Convolution Function Zero Padding

Comparison of Convolutions

Valid Convolution / no zero padding:

shrinks output size.

Input pixel influences output equally.

Same Convolution:

keeps size

arbitrary layers

Border pixels influence less output pixels.
I Border pixels underrepresented.

Full Convolution:

Pixels are visited equally often.

Output pixels near the border are a function of fewer pixels.
I Difficult to perform well at all positions.

Optimal size lies between same and valid convolution.

Nils Becker Convolutional Networks January 12, 2021 7 / 16

Variants of the Basic Convolution Function Unshared Convolution

Unshared Convolution
Unshared convolution

consists of locally connected layers, where the parameters are not
shared.
can be regarded as that each output pixel has its own kernel.
is useful when the occurrence of a pattern is restricted in space.

Figure: Comparison between unshared (Top) and normal convolution (Bottom)
with a kernel width of two [2].

Nils Becker Convolutional Networks January 12, 2021 8 / 16

Variants of the Basic Convolution Function Tiled Convolution

Tiled Convolution
Tiled Convolution

is a compromise between unshared and shared convolution.

uses multiple kernel, which rotate trough when moving through space.

has different kernels for neighboring locations.

memory only increases with number of kernels.

Figure: Example for tiled convolution with two kernels (a,b and c,d) with width of
two [2].

Nils Becker Convolutional Networks January 12, 2021 9 / 16

Structured Outputs

Structured Outputs

Convolutional Networks can output a structured object.
I represented by a multidimensional tensor

Example: Label each pixel of an image to a certain class. The
convolutional network can output a tensor where each pixel has a
vector of probabilities.

Problem: The network shrinks the image. We need to upsample it again.

Figure: Example of shrinking input by convolutional layers [4].

Nils Becker Convolutional Networks January 12, 2021 10 / 16

Structured Outputs

Working with shrinked output
Solutions:

avoid pooling
pooling only with unit stride
use low resolution
refine initial guess with recurrent network

Figure: Stepwise refinement of an image using a recurrent network. In the initial
step Ŷ is zero [2, P. 359]

Nils Becker Convolutional Networks January 12, 2021 11 / 16

Data Types

Data Types

Convolutional networks can can handle data with varying size.

Kernel is applied according to the size of the input.
I Output scales with input.

But, what is, when we need a fixed size of the output?
I Insert a pooling layer, which scales proportional to input size.

Nils Becker Convolutional Networks January 12, 2021 12 / 16

Data Types

Usages for CNNs

Because of the useful properties of convolutional networks, we can use
them on:

Single channel

audio files

audio data in frequency domain

volumetric data / CT scans

Multi channel

animation data (channels representing angles of joints)

colored images

colored videos

Nils Becker Convolutional Networks January 12, 2021 13 / 16

Efficient Convolutional Algorithms

Efficient Convolutional Algorithms

Pointwise convolution on millions of units is computational intense.

Regard input as signals.

Use Fourier transformation. ⇒ Convolution becomes multiplication.

Transform result back.

If a d-dimensional kernel is separable (kernel can be expressed as product
of d vectors), we can do d one-dimensional convolutions. Let w be the
kernel width in each dimension, we get following runtime and memory
consumption:

naive approach: O(wd)

separable kernel: O(w ∗ d)

Nils Becker Convolutional Networks January 12, 2021 14 / 16

Summary

Summary

Kinds of convolution
I Multichannel Convolution
I Strided Convolution
I Unshared Convoluton

Zero Padding
I Valid Convolution
I Same Convolution
I Full Convolution

Structured outputs

Data types and usage of CNNs

Efficient Convolutional Algorithms

Nils Becker Convolutional Networks January 12, 2021 15 / 16

References

References

[1] https://d2l.ai/chapter_convolutional-neural-networks/

channels.html.

[2] Ian Goodfellow, Yoshua Bengio, and Aaron Courville.
Deep Learning.
MIT Press, 2016.
http://www.deeplearningbook.org.

[3] Vincent Dumoulin and Francesco Visin.
A guide to convolution arithmetic for deep learning, 2018.

[4] Cesare Valenti, Bijen Khagi, and Goo-Rak Kwon.
Pixel-label-based segmentation of cross-sectional brain mri using
simplified segnet architecture-based cnn.
Journal of Healthcare Engineering, 2018:3640705, 2018.

Nils Becker Convolutional Networks January 12, 2021 16 / 16

https://d2l.ai/chapter_convolutional-neural-networks/channels.html
https://d2l.ai/chapter_convolutional-neural-networks/channels.html
http://www.deeplearningbook.org

Appendix

Appendix

Figure: Example for a separable kernel. Here: gaussian filter used in image
editing. (https://de.wikipedia.org/wiki/Separierbarkeit)

Nils Becker Convolutional Networks January 12, 2021 1 / 1

