Optimization Methods

Seminar Principles of Data Mining and Learning Algorithms

Anna-Maria Meschede and Jan Polster

November 10th 2020

1/39

Outline

» Gradient-Based Optimization (4.3)
» Constrained Optimization (4.4)

» Example: Linear Least Squares (4.4)

v

Gradient-Based Learning (6.2)

» Back-Propagation Algorithms (6.5)

2/39

Gradient-Based Optimization

3/39

Gradient-Based Optimization

» Optimization methods widely used for deep learning
algorithms
» Given f:R" — R find 2* := argmin f(x)
zeR™
> Idea: Start at initial value x and iteratively move in direction
of steepest descent u until convergence.
> Update ;41 « x; + cu
» how to find u?
» how to find stepsize €7

4/39

I #STARTING POINT

“ k\\h\“‘hh"
' ; ® LocAL

MINIMA

Figure: https://www.hackerearth.com/blog/developers/
3-types-gradient-descent-algorithms-small-large-data-sets/

5/39

https://www.hackerearth.com/blog/developers/3-types-gradient-descent-algorithms-small-large-data-sets/
https://www.hackerearth.com/blog/developers/3-types-gradient-descent-algorithms-small-large-data-sets/

Gradient and directional Derivative

» Partial derivative a%if(x): derivative of f w.r.t. x;

. T
» Gradient V, f(z) := <8%1f(a:), ce %f(x))
» Directional derivative in direction u:
> 2 f(z+ au) evaluated at o = 0
> Equal to uTV, f(z)
» Want to find direction © with minimal directional derivative to
minimize f.
— Find argmin u™V f(x).

w[|uf|=1

6/39

Direction of Steepest Descent

argmin [|ull2[|Va f ()2 cos(a)

argmin TV, f(x)

u,[luf=1 u,[luf=1
= argmin cos(a)
w,fluf=1

» «: angle between u and V, f(x)

» cos(a) minimized when u points in opposite direction of
gradient

> zip1 = — eV f()

7/39

Jacobian Matrix

> Given f:R"” - R™

» f consists of m functions f1,..., f;n : R = R
fi(z)]"
fm(z)

> Jacobian Matrix: J € R™*", (J);; = 9%
J

T

| |
Voft oo Vafm
| |

—J=

8/39

Hessian Matrix

» Contains all partial second order derivatives
» Curvature of f
> H e R, H(f)(@)ij = 57 f (@)

— Second order derivative in direction u at z: uTH(f)(z)u
— Symmetric for continous derivatives
— uTH(f)(z)u weighted average of eigenvalues

9/39

Optimal Stepsize ¢

Second order Taylor Approximation:
> Let g:=V,f(z9), H := H(f)(z®)

F) mf (0 4+ (@D - o0

n %(xw) 2T (0D —)

l’ 1
=1@V) —egTg + 57T Hy

> When gTHg is O or negative increase ¢

g7y

> When gTHg is positive set e* = i

10/39

Issues of Gradient Descent

» lll-conditioned Hessian leads to poorly performing gradient
descent

» Condition k(H) =)i\\:nnﬁ
differ from each other.

shows how much second derivatives

» Fast increase of derivative in one direction, slow decrease in
another.

— Solve problems by using Newton's Method

11/39

Newton's Method

Second order Taylor approximation of f:
FE0) ~f @) 4 (o = 2OV f (o)
+ 5 = TH(F)EO) (@ - 2)

— Optimal: 20D = 2 — H(f)(z®)=1V, f(z®)

12/39

Constrained Optimization

13/39

Constrained Optimization

» Minimize f: R™ — R with additional conditions
» Constraints: g;(z) <0fori=1,....m
hi(z) =0forj=1,..,k
i, hj :R* - R
> Idea: Translate into unconstrained problem.
> KKT-approach:
> Lagrangian L(z, A, p) == f(z) + 32 Nigi(®) + 325 pihj ()
A eRY,, peRF

» Find min max max L£(x, A, u)
T p A0

14 /39

Necessary Conditions for local Minimum

Want to find (z*, *, u*) s.t.
» All constraints are satisfied.

> V. L(z*, N\, u*)=0
> Ar >0, Aigi(x*) =0fori=1,....m

15/39

Example: Linear Least Squares

16/39

Example: Least Linear Squares

Minimize f(z) = 3||Az —b|]?, f:R* - R, A€ R™", beR™

» Gradient descent: —V, f(z) = AT(Az —b)
» Newton’s method: Converges in 1 step.

» KKT-approach: Suppose 27z < 1
— L(x,) = f(z) + ANzTz — 1)
— a* = (ATA+2)\I)"1ATh

17/39

Gradient-Based Learning

18/39

Deep Feedforward Networks

> A deep feedforward network, feedforward neural network or
multilayer perceptron (MLP) is the quintessential deep
learning model.

» Goal: approximate some function f*

» Feedforward network defines a mapping y = f(x;6) and
learns parameter 6 with best approximation.

> typically represented by a composition of functions

f(@) = fs(f2(f1(z)))
» f;: i-th layer,
» last layer: output layer

19/39

o
Input Output
—
Input First Second Output
Layer Hidden Dutput Layer
Layer Layer

Figure: https://medium.com/@AI_with_Kain/
understanding-of-multilayer-perceptron-mlp-8£f179c4al135f

20/39

https://medium.com/@AI_with_Kain/understanding-of-multilayer-perceptron-mlp-8f179c4a135f
https://medium.com/@AI_with_Kain/understanding-of-multilayer-perceptron-mlp-8f179c4a135f

Gradient-Based Learning: Motivation

» High descriptive power of neural networks leads to more
complicated loss functions which are generally nonconvex.
» Minimizing nonconvex functions typically involves an
iterative, gradient-based approach.
» no global convergence guarantee

> sensitive to starting point
» might stop at a local minimum

» Task:

» choose cost function
» find representation of output according to the model
» compute gradient efficiently

21/39

Cost Functions

» Most cases: parametric model defines distribution p(y|z;6),
we use the principle of maximum likelihood.

> Equivalent to: minimizing cross-entropy between training
data and model distribution:

J(a) = _Emvy’\’ﬁdata 10gpm0de| (y‘x)

» ¢ : model parameter
P Pdata : empirical distribution w.r.t. training data

» Specifying a model automatically determines the cost function

22/39

Output Units

Setting:
» feedworward network produces hidden features h = f(x;0).

» output layer then has to transform h to an appropriate result
(w.r.t. to the task)

23/39

Output Units

Example 1: Sigmoid Units for Bernoulli Output Distributions
» Predict value of binary variable y.
» Neural net needs to predict P(y =1 | x), i.e. output needs to
lie in [0, 1].
Possible solution:

» use linear unit and threshold its value:
P(y=1|z) = max{0, min{l,wTh + b}}

» bad idea for gradient descent since gradient is O for values
outside of [0, 1]

24/39

Better solution:

> compute z = wTh + b in linear layer, output:

Ply=1|)=o(2),

1
1+exp(—z)

where o(z) = "logistic sigmoid function”:

10 il o il 10

25/39

Sigmoid Units for Bernoulli Output Distributions

Motivation of sigmoid function, o(z) =

1 :
1+exp(—z) -
» Goal: define a probability distribution P(y) using z = wTh+b

> Start from an unnormalized distribution P(y) and the
assumption log P(y) = yz.

P(y) = exp(yz),

_ exp(yz)
Ply) = Zy’:(),l exp(y'z)’
P(y) =o((2y — 1)z).

26/39

Cost function for maximum likelihood learning:

J(0) = —log P(ylz)
=—logo((2y — 1)z)
=(C((1 —2y)2).

» ((x) =log(1l + exp(z)) "softplus function”

10 -

f 1
10 i 0 i3 10

» J(0) has good properties for gradient descent:

» y =1: {(—=z) saturates for very positive z
» y =0: ((z) saturates for very negative z

27/39

Output Units

Example 2: Softmax Units for Multinoulli Output Distributions
» Generalize to the case of a discrete variable y with n values,
i.e. produce a vector § with ; = P(y = i|x).
» Approach: a linear layer predicts unnormalized
log-probabilities:

z=WTh+0,
z; = log P(y = i|x).

> output:
exp(z;)

> exp(z))

U; = softmax(z); =

28/39

Maximum likelihood training:
> Maximizing log-likelihood:
log P(y = i|z) = log softmax(z);
exp(z;)
> exp(z;)
=z — logz exp(z;)
J

= log

> log), exp(zj) ~ max;z;
» Incorrect answers (i.e. small z; on the correct classification 1)
are penalized the most.

> If the correct answer y = i has the highest input, i.e.
z; = max; z; both terms roughly cancel.

29/39

Back-Propagation Algorithms

30/39

Back-Propagation Algorithms

» Feedforward neural network: assigns x — ¢
» Want to minimize cost function J(0)

» Back-Propagation: computes Vy f(x;6) for given
f :R™ — R by letting information flow backwards through
network

— Compute Vg J(6) this way.

31/39

Computational Graphs

Nodes: represent variables
Edges: represent operations (simple functions)

Example: C' = f(A,B) = AB

(4)—Ac)
(3)

32/39

Chain Rule of Calculus

» Compute derivative of composed functions

y=f(x), z=g(y) = 9(f(x))

» 1-dim: fg:R—R
dz _ dzd
=g
» n-dim: f:R" - R™ ¢g:R™ >R

9z _ ~x~m 9z 0y
Ox; — Zj:l 0y; Ox;

33/39

Example: Back-Propagation

0
. w z Y z

34/39

Back-Propagation in Fully Connected MLP’s

Algorithm Forward Propagation

Input Network with depth [, (z,y), WO p@ fori=1,...,1
fori=1,...,l do
a® «— WOpE=1) 4 p(@)
R — f(a)
end for
<+ h®
T (G,)+ 20(0)

sy

35/39

Back-Propagation in Fully Connected MLP’s

Algorithm Back-Propagation
1: g < V@J = V@L(Q,y)
2:. fori=1,...,1do
3 g+ Veod = f(a)Tg
4 Vi J g+ AVb(i>Q(6)
5 VipwdJ « gh=UT £ AV,,.,Q(0)
6
7

g < Vyu-nd = W(i)Tg
. end for

— Computation effort linear in number of edges

36/39

Example: Back-Propagation for MLP Training

Want to compute V,1)J, Vi@ J

@ . @max{@,-}@ . @ cross

entropy

— VW(z)J = VU(Q)JHT
— Vyod = Vo JaT

37/39

Thank you for your attention!

38/39

References

References

Goodfellow, I., Bengio, Y., and Courville, A. (2016). Deep
Learning. MIT Press. http://www.deeplearningbook.org.

39/39

http://www.deeplearningbook.org

	References

