Optimization Methods Seminar Principles of Data Mining and Learning Algorithms

Anna-Maria Meschede and Jan Polster

November 10th 2020

1 / 39

 Ω

メロトメ 御 トメ 差 トメ 差 トー 差

Outline

- ▶ Gradient-Based Optimization (4.3)
- \triangleright Constrained Optimization (4.4)
- Example: Linear Least Squares (4.4)
- Gradient-Based Learning (6.2)
- \blacktriangleright Back-Propagation Algorithms (6.5)

Gradient-Based Optimization

メロトメ 御 トメ 差 トメ 差 トー 差 209 3 / 39

Gradient-Based Optimization

- \triangleright Optimization methods widely used for deep learning algorithms
- ► Given $f : \mathbb{R}^n \to \mathbb{R}$ find $x^* := \text{argmin } f(x)$ x∈Rⁿ
- \blacktriangleright Idea: Start at initial value x_0 and iteratively move in direction of steepest descent u until convergence.
- \triangleright Update $x_{i+1} \leftarrow x_i + \varepsilon u$
	- \blacktriangleright how to find u ?
	- In how to find stepsize ε ?

Figure: [https://www.hackerearth.com/blog/developers/](https://www.hackerearth.com/blog/developers/3-types-gradient-descent-algorithms-small-large-data-sets/) [3-types-gradient-descent-algorithms-small-large-data-sets/](https://www.hackerearth.com/blog/developers/3-types-gradient-descent-algorithms-small-large-data-sets/)

Gradient and directional Derivative

- ▶ Partial derivative $\frac{\partial}{\partial x_i} f(x)$: derivative of f w.r.t. x_i
- **Gradient** $\nabla_x f(x) := \begin{pmatrix} \frac{\partial}{\partial x} \end{pmatrix}$ $\frac{\partial}{\partial x_1} f(x), \ldots, \frac{\partial}{\partial x}$ $\frac{\partial}{\partial x_n} f(x)$ ^T
- \blacktriangleright Directional derivative in direction u :
	- \triangleright $\frac{\partial}{\partial \alpha} f(x + \alpha u)$ evaluated at $\alpha = 0$
	- Equal to $u^{\dagger} \nabla_x f(x)$
	- \triangleright Want to find direction u with minimal directional derivative to minimize f.

6 / 39

K ロ ▶ K @ ▶ K 할 ▶ K 할 ▶ 이 할 → 90 Q Q

 \rightarrow Find argmin $u^{\dagger} \nabla_x f(x)$. $u, \|u\|=1$

Direction of Steepest Descent

$$
\underset{u, \|u\|=1}{\text{argmin}} \ u^{\mathsf{T}} \nabla_x f(x) = \underset{u, \|u\|=1}{\text{argmin}} \ \|u\|_2 \|\nabla_x f(x)\|_2 \cos(\alpha)
$$

$$
= \underset{u, \|u\|=1}{\text{argmin}} \cos(\alpha)
$$

- \triangleright α : angle between u and $\nabla_x f(x)$
- \triangleright cos(α) minimized when u points in opposite direction of gradient

$$
\blacktriangleright x_{i+1} = x_i - \epsilon \nabla f(x)
$$

Jacobian Matrix

• Given
$$
f: \mathbb{R}^n \to \mathbb{R}^m
$$

If the functions $f_1, \ldots, f_m : \mathbb{R}^n \to \mathbb{R}$

$$
f(x) = \begin{bmatrix} f_1(x) \\ \dots \\ f_m(x) \end{bmatrix}^\mathsf{T}
$$

D Jacobian Matrix: $J \in \mathbb{R}^{m \times n}$, $(J)_{i,j} = \frac{\partial f_i}{\partial x_i}$ ∂x_j

$$
\rightarrow J = \begin{bmatrix} | & & | \\ \nabla_x f_1 & \dots & \nabla_x f_m \\ | & & | \end{bmatrix}^{\mathsf{T}}
$$

Hessian Matrix

- \triangleright Contains all partial second order derivatives
- \blacktriangleright Curvature of f

$$
\blacktriangleright H \in \mathbb{R}^{n \times n}, H(f)(x)_{i,j} := \frac{\partial}{\partial x_i \partial x_j} f(x)
$$

- \rightarrow Second order derivative in direction u at $x: u^T H(f)(x)u$
- \rightarrow Symmetric for continous derivatives
- $\rightarrow u^{\intercal}H(f)(x)u$ weighted average of eigenvalues

Optimal Stepsize ε

Second order Taylor Approximation:

$$
\begin{aligned} \n\blacktriangleright \text{ Let } g &:= \nabla_x f(x^{(i)}), \ H := H(f)(x^{(i)}) \\ \n& f(x^{(i+1)}) &\approx f(x^{(i)}) + (x^{(i+1)} - x^{(i)})g \\ \n& + \frac{1}{2} (x^{(i+1)} - x^{(i)})^\mathsf{T} H(x^{(i+1)} - x^{(i)}) \\ \n& = f(x^{(i)}) - \varepsilon g^\mathsf{T} g + \frac{1}{2} \varepsilon^2 g^\mathsf{T} H g \n\end{aligned}
$$

 \blacktriangleright When $g^{\intercal} H g$ is 0 or negative increase ε Nhen $g^{\dagger}Hg$ is positive set $\varepsilon^* = \frac{g^{\dagger}g}{g^{\dagger}H}$ \breve{g} t \breve{H} g

Issues of Gradient Descent

- \blacktriangleright III-conditioned Hessian leads to poorly performing gradient descent
- \triangleright Condition $\kappa(H) =$ λ_{max} λ_{min} $\begin{array}{c} \begin{array}{c} \begin{array}{c} \end{array}\\ \begin{array}{c} \end{array} \end{array} \end{array}$ shows how much second derivatives differ from each other.
- \blacktriangleright Fast increase of derivative in one direction, slow decrease in another.
- \rightarrow Solve problems by using Newton's Method

Newton's Method

Second order Taylor approximation of f:

$$
f(x^{(i+1)}) \approx f(x^{(i)}) + (x - x^{(i)})^{\mathsf{T}} \nabla_x f(x^{(i)}) + \frac{1}{2} (x - x^{(i)})^{\mathsf{T}} H(f)(x^{(i)}) (x - x^{(i)})
$$

 \to Optimal: $x^{(i+1)} = x^{(i)} - H(f)(x^{(i)})^{-1} \nabla_x f(x^{(i)})$

Constrained Optimization

Constrained Optimization

 \blacktriangleright Minimize $f : \mathbb{R}^n \to \mathbb{R}$ with additional conditions

\n- Constraints:
$$
g_i(x) \leq 0
$$
 for $i = 1, ..., m$, $h_i(x) = 0$ for $j = 1, ..., k$, $g_i, h_j : \mathbb{R}^n \to \mathbb{R}$
\n

- \blacktriangleright Idea: Translate into unconstrained problem.
- \blacktriangleright KKT-approach:

\n- Lagrangian
$$
\mathcal{L}(x, \lambda, \mu) := f(x) + \sum_i \lambda_i g_i(x) + \sum_j \mu_j h_j(x)
$$
 $\lambda \in \mathbb{R}_{\geq 0}^m$, $\mu \in \mathbb{R}^k$
\n- Find min max max $\sum_i \mathcal{L}(x, \lambda, \mu)$
\n- Find min max $\sum_i \mathcal{L}(x, \lambda, \mu)$
\n

Necessary Conditions for local Minimum

Want to find
$$
(x^*, \lambda^*, \mu^*)
$$
 s.t.

 \blacktriangleright All constraints are satisfied.

$$
\blacktriangleright \nabla_x \mathcal{L}(x^*, \lambda^*, \mu^*) = 0
$$

$$
\blacktriangleright \ \lambda_i^* \ge 0, \ \lambda_i^* g_i(x^*) = 0 \ \text{for} \ i = 1, ..., m
$$

15 / 39

 QQ

イロト 不優 トメ 差 トメ 差 トー 差

Example: Linear Least Squares

メロメメ 御 メメ きょく ミメー 目 Ω 16 / 39

Example: Least Linear Squares

Minimize $f(x) = \frac{1}{2} ||Ax - b||^2$, $f: \mathbb{R}^n \to \mathbb{R}$, $A \in \mathbb{R}^{m \times n}$, $b \in \mathbb{R}^m$

17 / 39

K ロ ▶ K 個 ▶ K 글 ▶ K 글 ▶ │ 글 │ ◆) Q (◇

- ► Gradient descent: $-\nabla_x f(x) = A^{\mathsf{T}}(Ax b)$
- \blacktriangleright Newton's method: Converges in 1 step.
- **KKT-approach:** Suppose $x^{\intercal} x \leq 1$ $\rightarrow \mathcal{L}(x, \lambda) = f(x) + \lambda(x^{\mathsf{T}}x - 1)$ $\rightarrow x^* = (A^{\dagger}A + 2\lambda I)^{-1}A^{\dagger}b$

Gradient-Based Learning

Deep Feedforward Networks

- \triangleright A deep feedforward network, feedforward neural network or multilayer perceptron (MLP) is the quintessential deep learning model.
- Goal: approximate some function f^*
- **Feedforward network defines a mapping** $y = f(x; \theta)$ and learns parameter θ with best approximation.
- \blacktriangleright typically represented by a composition of functions $f(x) = f_3(f_2(f_1(x)))$
	- \blacktriangleright f_i : *i*-th layer,
	- \blacktriangleright last layer: output layer

Figure: [https://medium.com/@AI_with_Kain/](https://medium.com/@AI_with_Kain/understanding-of-multilayer-perceptron-mlp-8f179c4a135f) [understanding-of-multilayer-perceptron-mlp-8f179c4a135f](https://medium.com/@AI_with_Kain/understanding-of-multilayer-perceptron-mlp-8f179c4a135f)

Gradient-Based Learning: Motivation

- \blacktriangleright High descriptive power of neural networks leads to more complicated loss functions which are generally nonconvex.
- \blacktriangleright Minimizing nonconvex functions typically involves an iterative, gradient-based approach.
	- \triangleright no global convergence guarantee
	- \blacktriangleright sensitive to starting point
	- \blacktriangleright might stop at a local minimum

\blacktriangleright Task:

- \blacktriangleright choose cost function
- \blacktriangleright find representation of output according to the model
- \blacktriangleright compute gradient efficiently

Cost Functions

- **I** Most cases: parametric model defines **distribution** $p(y|x; \theta)$, we use the principle of maximum likelihood.
- \blacktriangleright Equivalent to: minimizing cross-entropy between training data and model distribution:

$$
J(\theta) = -\mathbb{E}_{x,y \sim \hat{p}_{\text{data}}} \log p_{\text{model}}(y|x)
$$

- \blacktriangleright θ : model parameter
- \triangleright \hat{p}_{data} : empirical distribution w.r.t. training data

 \triangleright Specifying a model automatically determines the cost function

Output Units

Setting:

- **Figure 1** feedworward network produces hidden features $h = f(x; \theta)$.
- \triangleright output layer then has to transform h to an appropriate result (w.r.t. to the task)

Output Units

Example 1: Sigmoid Units for Bernoulli Output Distributions

- \blacktriangleright Predict value of **binary** variable y.
- \blacktriangleright Neural net needs to predict $P(y = 1 | x)$, i.e. output needs to lie in $[0, 1]$.

Possible solution:

 \blacktriangleright use linear unit and threshold its value:

$$
P(y = 1 | x) = \max\{0, \min\{1, w^{\mathsf{T}}h + b\}\}\
$$

 \triangleright bad idea for gradient descent since gradient is 0 for values outside of $[0, 1]$

K ロ ▶ K 個 ▶ K 글 ▶ K 글 ▶ │ 글 │ ◆) Q (◇

Better solution:

 \triangleright compute $z = w^{\dagger}h + b$ in linear layer, output:

$$
P(y=1 | x) = \sigma(z),
$$

where $\sigma(x) = \frac{1}{1+\exp(-x)}$ "logistic sigmoid function":

K ロ ▶ K 個 ▶ K 글 ▶ K 글 ▶ │ 글 │ ◆) Q (º 25 / 39

Sigmoid Units for Bernoulli Output Distributions

Motivation of sigmoid function, $\sigma(x) = \frac{1}{1 + \exp(-x)}$:

- Goal: define a probability distribution $P(y)$ using $z = w^{\dagger}h + b$
- Start from an unnormalized distribution $\tilde{P}(y)$ and the assumption $\log \tilde{P}(y) = yz$.

$$
\tilde{P}(y) = \exp(yz),
$$

$$
P(y) = \frac{\exp(yz)}{\sum_{y'=0,1} \exp(y'z)},
$$

$$
P(y) = \sigma((2y-1)z).
$$

26 / 39

イロト 不優 トメ 差 トメ 差 トー 差

Cost function for maximum likelihood learning:

$$
J(\theta) = -\log P(y|x)
$$

= $-\log \sigma((2y-1)z)$
= $\zeta((1-2y)z)$.

 \blacktriangleright $J(\theta)$ has good properties for gradient descent: \triangleright y = 1: $\zeta(-z)$ saturates for very positive z \triangleright y = 0: $\zeta(z)$ $\zeta(z)$ $\zeta(z)$ saturates for very negative z

Output Units

Example 2: Softmax Units for Multinoulli Output Distributions

- Generalize to the case of a discrete variable γ with n values, i.e. produce a vector \hat{y} with $\hat{y}_i = P(y = i|x)$.
- \triangleright Approach: a linear layer predicts unnormalized log-probabilities:

$$
z = W^{\mathsf{T}} h + b,
$$

$$
z_i = \log \tilde{P}(y = i|x).
$$

output:

$$
\hat{y}_i = \text{softmax}(z)_i = \frac{\exp(z_i)}{\sum_j \exp(z_j)}
$$

 $\mathbf{E} = \mathbf{A} \oplus \mathbf{B} + \mathbf{A} \oplus \mathbf{B} + \mathbf{A} \oplus \mathbf{B} + \mathbf{A} \oplus \mathbf{A}$ 28 / 39

Maximum likelihood training:

 \blacktriangleright Maximizing log-likelihood:

$$
\log P(y = i|x) = \log \operatorname{softmax}(z)_i
$$

$$
= \log \frac{\exp(z_i)}{\sum_j \exp(z_j)}
$$

$$
= z_i - \log \sum_j \exp(z_j)
$$

$$
\blacktriangleright \log \sum_j exp(z_j) \approx max_j z_j
$$

- Incorrect answers (i.e. small z_i on the correct classification i) are penalized the most.
- If the correct answer $y = i$ has the highest input, i.e. $z_i = \max_j z_j$ both terms roughly cancel.

Back-Propagation Algorithms

Back-Propagation Algorithms

- ► Feedforward neural network: assigns $x \mapsto \hat{y}$
- \blacktriangleright Want to minimize cost function $J(\theta)$
- ▶ Back-Propagation: computes $\nabla_{\theta} f(x; \theta)$ for given $f:\mathbb{R}^n\rightarrow\mathbb{R}$ by letting information flow backwards through network
- \rightarrow Compute $\nabla_{\theta}J(\theta)$ this way.

Computational Graphs

Nodes: represent variables Edges: represent operations (simple functions)

Example: $C = f(A, B) = AB$

Chain Rule of Calculus

\n- Compute derivative of composed functions
$$
y = f(x), \ z = g(y) = g(f(x))
$$
\n- **1-dim:** $f, g : \mathbb{R} \to \mathbb{R}$
\n- $\frac{dz}{dx} = \frac{dz}{dy} \frac{dy}{dx}$
\n- **n-dim:** $f : \mathbb{R}^n \to \mathbb{R}^m, \ g : \mathbb{R}^m \to \mathbb{R}$
\n

$$
\rightarrow \frac{\partial z}{\partial x_i} = \sum_{j=1}^m \frac{\partial z}{\partial y_j} \frac{\partial y_j}{\partial x_i}
$$

33 / 39

 2990

イロメ 不倒 メイヨメ 不思 メーヨー

Example: Back-Propagation

$$
x = f(x), y = g(x), z = h(y)
$$
\n
$$
G: \quad \underbrace{(w)} \qquad f \qquad g \qquad g \qquad h \qquad z
$$
\n
$$
B: \underbrace{\frac{\partial z}{\partial w} \qquad \frac{\partial x}{\partial w} \qquad \frac{\partial z}{\partial x} \qquad \frac{\partial z}{\partial y} \qquad \frac{\partial z}{\partial y} \qquad \frac{\partial z}{\partial z}}_{\frac{\partial z}{\partial y}} \qquad \frac{\partial z}{\partial z}
$$

 $\rightarrow \frac{\partial z}{\partial w} = \frac{\partial z}{\partial y}$ ∂y ∂y ∂x ∂x ∂w

Back-Propagation in Fully Connected MLP's

Algorithm Forward Propagation

Input Network with depth l , (x, y) , $W^{(i)}, b^{(i)}$ for $i = 1, \ldots, l$ 1: $h^{(0)} = x$ 2: for $i = 1, ..., l$ do 3: $a^{(i)} \leftarrow W^{(i)}h^{(i-1)} + b^{(i)}$ 4: $h^{(i)} \leftarrow f(a^{(i)})$ 5: end for 6: $\hat{y} \leftarrow h^{(l)}$ 7: $J \leftarrow L(\hat{y}, y) + \lambda \Omega(\theta)$

> **KORK EXTERNS ORA** 35 / 39

Back-Propagation in Fully Connected MLP's

Algorithm Back-Propagation

1:
$$
g \leftarrow \nabla_{\hat{y}} J = \nabla_{\hat{y}} L(\hat{y}, y)
$$
\n2: **for** $i = l, \ldots, 1$ **do**\n3: $g \leftarrow \nabla_{a^{(i)}} J = f'(a^{(i)})^T g$ \n4: $\nabla_{b^{(i)}} J \leftarrow g + \lambda \nabla_{b^{(i)}} \Omega(\theta)$ \n5: $\nabla_{W^{(i)}} J \leftarrow gh^{(i-1)T} + \lambda \nabla_{W^{(i)}} \Omega(\theta)$ \n6: $g \leftarrow \nabla_{h^{(i-1)}} J = W^{(i)T} g$ \n7: **end for**

\rightarrow Computation effort linear in number of edges

Example: Back-Propagation for MLP Training

Want to compute $\nabla_{W^{(1)}} J$, $\nabla_{W^{(2)}} J$

37 / 39

 2990

K ロ > K @ > K 경 > K 경 > 시 경

 $\rightarrow \nabla_{W^{(1)}} J = \nabla_{U^{(1)}} J x^{\mathsf{T}}$

Thank you for your attention!

イロト 不優 トメ 差 トメ 差 トー 差 Ω 38 / 39

References

Goodfellow, I., Bengio, Y., and Courville, A. (2016). Deep Learning. MIT Press. <http://www.deeplearningbook.org>.