
Practical Methodology

Baraa Hassan and Keanu Buschbacher
February 9, 2021

Table of contents

1 Performance Metrics

2 Default Baseline Models

3 Determine Wether to Gather More Data

4 Debugging Strategies

5 Selecting Hyperparameters
Manually
Automatically
Model-based

6 Example: Multi-Digit Number Recognition

Baraa Hassan and Keanu Buschbacher Practical Methodology 2 / 47

Model Performance

Baraa Hassan and Keanu Buschbacher Practical Methodology 3 / 47

Model Performance

Question
How to test your model performance?

Is it using:
1 Cost Function?
2 Error Rate?

Baraa Hassan and Keanu Buschbacher Practical Methodology 4 / 47

Model Performance
Cost Function vs. Error Rate

Cost/Loss Function:
It gives you a numerical evaluation of how your model output is deviated from the
target output, on the current state (train/dev./test).

Error Rate
It shows the rate of the dissimilarity between the model output and the target
output.

The Cost Function’s output is not an interpretable number for the accuracy, in the
same time the Error Rate is not enough to address the performance of the model.

Let’s see in the examples why.

Baraa Hassan and Keanu Buschbacher Practical Methodology 5 / 47

Email Spam Detection System
Different kind of errors in performance

We can have 4 scenarios for this system output:

Spam as a Spam VIP as a Spam

Spam as a VIP VIP as an VIP

Email Spam Detection System has 2 kinds of mistakes:

1 Classifying legitimate message as a spam
2 Allow spam message to appear in the inbox

In case of performance evaluation the first mistake is catastrophic and needed
much more to be prevented than the second one

Baraa Hassan and Keanu Buschbacher Practical Methodology 6 / 47

Rare Disease Classifier
Imbalance data performance

Our classifier is a binary classifier for a rare disease that happens once in a million
people.

Patient as a Patient
Non-patient
as a Patient

Patient as a
Non-patient

Non-patient as
a Non-Patient

Our classifier can achieve accuracy of 99.9999%, by only output false for all input
cases.

Although the classifier doesn’t achieve the expected goal (detecting the patients
catching this disease)

Baraa Hassan and Keanu Buschbacher Practical Methodology 7 / 47

Model Accuracy
How to choose your performance metrics

Confusion Matrix:

True Positive False Positive

False Negative True Negative

You should choose your performance metrics (that address your model accuracy)
according to your expected goal from the model.

Baraa Hassan and Keanu Buschbacher Practical Methodology 8 / 47

Model Accuracy
How to choose your performance metrics

• To achieve our goal in Spam Detection System:
•• we can compute FPR (Type 1 Error) = FP

FP+TN (to evaluate the first catastrophic
mistake).

• To achieve our goal in Rare Disease Classifier:
•• we can compute Recall (True Positive Rate) = TP

TP+FN (to get how many real
patient were detected).

•• we can compute Precision (Positive Prediction Value) = TP
TP+FP (to get how much

of the detected values were right).

Precision and Recall are inversely proportional; in case of all the output are
non-patient you will get a good precision but zero recall, and vice versa.

To get the mean of the two metrics you can compute F1 = 2∗Precision∗Recall
Precision+Recall .

Baraa Hassan and Keanu Buschbacher Practical Methodology 9 / 47

Model Accuracy
How to choose your performance metrics

There are many different metrics that you can use to achieve your goal:

• For Classification:
•• FPR
•• FNR
•• Recall
•• Precision

• For Regression:
•• Mean Absolute Error(MAE)
•• Mean Squared Error(MSE)
•• Root Mean Squared Error(RMSE)

Baraa Hassan and Keanu Buschbacher Practical Methodology 10 / 47

End-to-end System Development

Baraa Hassan and Keanu Buschbacher Practical Methodology 11 / 47

Default Baseline Models
End-to-end System

First Basline
Approach

AI-
complete?

Deep Learning

Machine Learning

Easy Imple-
mentation

(e.g logistic
regression)

Yes

No

Baraa Hassan and Keanu Buschbacher Practical Methodology 12 / 47

Default Baseline Models
End-to-end System

Deep Learning

Choose your model (e.g FCN,CNN, or RNN)

Choose optimization algorithm SGD + momentum + decaying LR

Adam Choose decay scheme(e.g linearly, fixed min., or factor 2-10)

Baraa Hassan and Keanu Buschbacher Practical Methodology 13 / 47

Default Baseline Models
End-to-end System

Adam Choose decay scheme

Hard to
converge?

Enough
Dataset?

Add Batch Norm.
Transfer Learning, Augmentation,

Semi-supervised, Regularizer

Hyper-tune
your model

No

Yes
No

Yes

Baraa Hassan and Keanu Buschbacher Practical Methodology 14 / 47

Determine Wether to Gather More Data

Baraa Hassan and Keanu Buschbacher Practical Methodology 15 / 47

Whether to Gather More Data

Question
When to decide to collect more data ?

Taking into consideration the cost of collecting more data.

In the next flowchart we will discuss when to collect more data

Baraa Hassan and Keanu Buschbacher Practical Methodology 16 / 47

Wether to Gather More Data
Model Debugging

Debug your
model

Training
perfor-
mance

is good?

Analyse-training-
implementation()

Bad
training
perfor-

mance?

Larger Network,
switch to Adam

Optimizer

Evaluate
your model

Bad
training
perfor-

mance?

GATHER MORE
TRAINING DATA!

No

Yes No

YesNo

Yes

Baraa Hassan and Keanu Buschbacher Practical Methodology 17 / 47

Wether to Gather More Data
Model Debugging

Evaluate
your model

Development
perfor-
mance

is good?

Hyper-tuning,
regularization

Bad de-
velopment

perfor-
mance?

GATHER MORE
TRAINING DATA!

Test your model

Test per-
formance
is good?

GATHER MORE
DEVELOP-

MENT DATA!

Deploy
your model

No

Yes No

YesYes

No

Baraa Hassan and Keanu Buschbacher Practical Methodology 18 / 47

[NG, 2018]

Baraa Hassan and Keanu Buschbacher Practical Methodology 19 / 47

Analysing Your Software Defects

Baraa Hassan and Keanu Buschbacher Practical Methodology 20 / 47

Debugging Strategies
How to analyse your software defects

To debug your train model method to check if you have software defect or
under-fitting problem:

• Visualize the model in action
• Visualize the worst mistakes
• Fit a tiny dataset
• Compare back-propagated derivatives to numerical derivatives
• Mintor histograms of activations and gradient

Sometimes it is hard to find the source of the problem; as the machine learning
models are composed of adaptive parts, if one went wrong the other parts can
adapt and achieve roughly acceptable performance.

Baraa Hassan and Keanu Buschbacher Practical Methodology 21 / 47

Selecting Hyperparameters

Baraa Hassan and Keanu Buschbacher Practical Methodology 22 / 47

Selecting Hyperparameters

Hyperparameters control different aspects of how your model behaves.

1 Costs: time and memory requirements during training (and inference)
2 Quality: performance during training process and on new inputs

Some parameters actually influence both!

Baraa Hassan and Keanu Buschbacher Practical Methodology 23 / 47

Strategies to tune Hyperparameters

Goal
Find hyperparameters that minimize the generalization error, s.t. they do not
exceed our runtime and memory requirements.

There are two kinds of strategies:

1 Manual hyperparameter tuning
•• No additional (explicit) computational complexity
•• Requires knowledge about hyperparameters...

2 Automatic hypterparameter tuning
•• Less need to understand hyperparameters
•• But computationally costly...

Baraa Hassan and Keanu Buschbacher Practical Methodology 24 / 47

Manual Hyperparameter Tuning

We want the capacity of our model to match the complexity of our task.
The effective model capacity consists of three factors:

Representational capacity What functions can my model represent?

Cost function capacity Can the learning algorithm
minimize my cost function?

Regularization capacity
How strong do training and cost
function regularize my model?

Baraa Hassan and Keanu Buschbacher Practical Methodology 25 / 47

The U-Curve
Manual Hyperparameter Tuning

Baraa Hassan and Keanu Buschbacher Practical Methodology 26 / 47

Effects of Hyperparameters
Manual Hyperparameter Tuning

Tendency Type Tendency

underfitting
/ overfitting

Discrete / Cont.
Hyperparameter

overfitting
/ underfitting

overfitting Binary
Hyperparameter underfitting

One-way
Hyperparameter

underfitting

small value large value

off on

Baraa Hassan and Keanu Buschbacher Practical Methodology 27 / 47

Effects of Learning Rate
Manual Hyperparameter Tuning

Source: CS231n Convolutional Neural Networks for Visual Recognition.1

The learning rate is a very important
hyperparameter.
• too large: gradient descent can

increase training error
• too low: slower training, more likely

to get stuck in local minima
The model capacity is highest if the
learning rate is set correctly!

1
https://cs231n.github.io/assets/nn3/learningrates.jpeg

Baraa Hassan and Keanu Buschbacher Practical Methodology 28 / 47

https://cs231n.github.io/assets/nn3/learningrates.jpeg

Common Hyperparameters
Manual Hyperparameter Tuning

Capacity Hyperparameter Capacity

Hidden Units increased

decreased Learning Rate increased

Kernel size increased

Implicit zero padding increased

decreased Weight decay coefficient

decreased Dropout rate

higher

too low/high optimal

higher

higher

higher

higher

Baraa Hassan and Keanu Buschbacher Practical Methodology 29 / 47

When to increase/decrease capacity?
Manual Hyperparameter Tuning

• Training error too large? Increase model capacity!
•• Are you using regularization? → Maybe use a bit less.
•• Is your optimization algorithm not performing correctly? → Fix it.

•• None of the above? → # Hidden Units Kernel size Padding

• Training error is fine, but test error is too large? We need to reduce the
generalization gap. Decrease model capacity!

•• Add regularization capacity→ Weight decay Dropout

•• Collect more training data

Baraa Hassan and Keanu Buschbacher Practical Methodology 30 / 47

Automatic Hyperparameter Tuning

Choosing hyperparameters is also an optimization: find hyperparameter values
that optimize an objective function, e.g. validation error.

Baraa Hassan and Keanu Buschbacher Practical Methodology 31 / 47

Grid Search
Automatic Hyperparameter Tuning

Source: Bergestra et al. (2012).2

Grid Search
• For three or fewer hyperparameters
• Train on every combination of

hyperparameter values
• Use best configuration according to

validation error

2
Bergstra, J., Bengio, Y.: Random search for hyper-parameter optimization. Journal of Machine Learning Research 13, 281–305 (2012)

Baraa Hassan and Keanu Buschbacher Practical Methodology 32 / 47

Grid Search
Automatic Hyperparameter Tuning

How to pick the hyperparameter values?

→ Logarithmic scale: {0.1,0.01,10−3,10−4,10−5}

Baraa Hassan and Keanu Buschbacher Practical Methodology 33 / 47

Random Search
Automatic Hyperparameter Tuning

Source: Bergestra et al. (2012).3

3
Bergstra, J., Bengio, Y.: Random search for hyper-parameter optimization. Journal of Machine Learning Research 13, 281–305 (2012)

Baraa Hassan and Keanu Buschbacher Practical Methodology 34 / 47

Random Search
Automatic Hyperparameter Tuning

Source: Bergestra et al. (2012).4

Random Search
• Hyperparameter values sampled

from random distribution
• Useful also for more than three

hyperparameters
• Explores wider parameter space

2
Bergstra, J., Bengio, Y.: Random search for hyper-parameter optimization. Journal of Machine Learning Research 13, 281–305 (2012)

Baraa Hassan and Keanu Buschbacher Practical Methodology 35 / 47

Random Search
Automatic Hyperparameter Tuning

Random search can be exponentially more efficient than grid search: it reduces
validation error much faster w.r.t number of trials.

Trials are not ”wasted” if two hyperparameters give the same result.

Example: #Units ∈ {50,100} lead to same validation error:

#Units LR Kernel size Error
50 0.01 5 0.81
100 0.01 5 0.81

Table: Grid search trials

#Units LR Kernel size Error
50 0.009 3 0.42

100 0.012 5 0.69

Table: Random search trials

Baraa Hassan and Keanu Buschbacher Practical Methodology 36 / 47

Model-based Optimization
Automatic Hyperparameter Tuning

If gradient ∂E
∂h is available, we can just follow this gradient.

If not, we can train a model to optimize validation error with our hyperparameters
as decision variables.

→ Estimates validation error and uncertainty using Bayesian regression

Examples:
• Spearmint [Snoek et al., 2012]
• TPE [Bergstra et al., 2011]
• SMAC [Hutter et al., 2011]

Baraa Hassan and Keanu Buschbacher Practical Methodology 37 / 47

Real-life Application of Practical
Methodology

Baraa Hassan and Keanu Buschbacher Practical Methodology 38 / 47

Example: Multi-Digit Number Recognition
Street View Transcription System

Goal
Assign digits to pictures of street numbers if model confidence p(y | x) ≥ t for
some threshold t .

Figure: Street view transcription system. [Goodfellow et al., 2014]

Baraa Hassan and Keanu Buschbacher Practical Methodology 39 / 47

Example: Multi-Digit Number Recognition

1 Choose performance metrics
•• Choose the metrics according to the project’s business goal!
•• Here: maps require high, human-level accuracy
•• This meant a high threshold to accept results of the model

Metric is therefore: coverage, i.e. percentage of confidences above the threshold
(goal: >95%)

Baraa Hassan and Keanu Buschbacher Practical Methodology 40 / 47

Example: Multi-Digit Number Recognition

2 Establish baseline model
•• Try to iteratively improve the model!
•• Here: n different softmax units to predict n characters
•• each unit trained independently
•• p(y |x) obtained by multiplying units together

Improvement idea: use output layer/cost function that computes
log-likelihood instead

Baraa Hassan and Keanu Buschbacher Practical Methodology 41 / 47

Example: Multi-Digit Number Recognition

Coverage was still below 90%. Is the problem under- or overfitting?

3 Debug model
•• Here: training and test error were identical
→ underfitting or problem with training data

•• Visualize model’s worst mistakes

Baraa Hassan and Keanu Buschbacher Practical Methodology 42 / 47

Example: Multi-Digit Number Recognition

Coverage was still below 90%. Is the problem under- or overfitting?

3 Debug model
•• Here: training and test error were identical
→ underfitting or problem with training data

•• Visualize model’s worst mistakes:
→ Some images were cropped too tightly!

Solution: add margin of safety around crops (+10% coverage)

Baraa Hassan and Keanu Buschbacher Practical Methodology 43 / 47

Example: Multi-Digit Number Recognition

4 Adjust hyperparameters
•• Here: train and test error remained equal→ underfitting
•• Model was made larger

Baraa Hassan and Keanu Buschbacher Practical Methodology 44 / 47

Theme by @fseiffarth:
https://github.com/fseiffarth/LatexBeamerThemeUniBonnStyle

Baraa Hassan and Keanu Buschbacher Practical Methodology 45 / 47

https://github.com/fseiffarth/LatexBeamerThemeUniBonnStyle

References

James Bergstra, Rémi Bardenet, Yoshua Bengio, and Balázs Kégl. Algorithms for
hyper-parameter optimization. In J. Shawe-Taylor, R. Zemel, P. Bartlett,
F. Pereira, and K. Q. Weinberger, editors, Advances in Neural Information
Processing Systems, volume 24, pages 2546–2554. Curran Associates, Inc.,
2011. URL https://proceedings.neurips.cc/paper/2011/file/
86e8f7ab32cfd12577bc2619bc635690-Paper.pdf.

Ian J. Goodfellow, Yaroslav Bulatov, Julian Ibarz, Sacha Arnoud, and Vinay Shet.
Multi-digit number recognition from street view imagery using deep
convolutional neural networks, 2014.

Frank Hutter, Holger H. Hoos, and Kevin Leyton-Brown. Sequential model-based
optimization for general algorithm configuration. In Carlos A. Coello Coello,
editor, Learning and Intelligent Optimization, pages 507–523, Berlin,
Heidelberg, 2011. Springer Berlin Heidelberg. ISBN 978-3-642-25566-3.

Andrew NG. Machine learning yearning. URL¡
https://www.deeplearning.ai/programs/, 1, 2018.

Jasper Snoek, Hugo Larochelle, and Ryan Adams. Practical bayesian optimization
of machine learning algorithms. Advances in Neural Information Processing
Systems, 4, 06 2012.Baraa Hassan and Keanu Buschbacher Practical Methodology 46 / 47

https://proceedings.neurips.cc/paper/2011/file/86e8f7ab32cfd12577bc2619bc635690-Paper.pdf
https://proceedings.neurips.cc/paper/2011/file/86e8f7ab32cfd12577bc2619bc635690-Paper.pdf

Thank You for Listening!

Baraa Hassan and Keanu Buschbacher Practical Methodology 47 / 47

	Performance Metrics
	Default Baseline Models
	Determine Wether to Gather More Data
	Debugging Strategies
	Selecting Hyperparameters
	Manually
	Automatically
	Model-based

	Example: Multi-Digit Number Recognition
	References

