Recurrent Neural Networks

Seminar Principles of Data Mining and Learning Algorithms

Gular Shukurova
Sheikh Mastura Farzana

Outline

e Unfolding Computational Graphs (10.1)

e Recurrent Neural Networks (10.2.1)
e Gradient Computation (10.2.2)
e RNNs as Directed Graphical Models (10.2.3)

e Modeling Sequences Conditioned on Context (10.2.4)
e Long Term Dependencies (10.7)
e Gated RNNs (10.10)

Unfolding Computational Graphs

e EXxpressing a recurrent computation into a computational graph

Gl — f(s(t—l); 0)

For t=3
s =f(s2).)
=f(f(s";6);0).

Example

¥ Unfold

Figure: (left) Circuit Diagram, (right) unfolded computational graph, each node associated to a single timestep.

Reference: lan Goodfellow, Yoshua Bengio, and Aaron Courville. Deep Learning. http://www.deeplearningbook.org. MIT Press, 2016.

Computation

Rewriting the equation from previous slide with h(t):

A — f(RtD 2.)
The unfolded recurrence after t steps represented with a function g(t):
h(t) :g(t) (a:(t), p(t—1) ’ p(t—2) . ,w(Q), m(l))
=f(B" 1,2l 9).

Recurrent Neural Networks

e Recurrent Neural Networks (RNNs) are a class of neural networks for
processing sequential data.

e RNNs use feedback loops to process a sequence of data that allow
information to persist.

e Reducing the complexity of parameters by parameter sharing

e A powerful tool in applications like text processing, speech recognition,
language translation and DNA sequences, where the output depends on the
previous computations.

RNNs by examples

e Example #1

Y

Unfold

RNNs by examples (cont)

e Forward propagation, t€[1, 1]

a® = b+ WhtD L Uz®,
h() = tanh(a®),

o® — ¢4+ Vh®,

Q(f) — Soft.maX(O(t)),

e Total loss:

RNNs by examples (cont)

e Example #2 °

Teacher Forcing

e Conditional maximum likelihood criterion:

o <y(1) 2) | V) (z>)
—Jogp (y<2) |y<1>,m<1),m<2)) +logp (ym |w(1)7m(2>>

e Advantage: to avoid BPTT in models that lack hidden-to-hidden connections

e Disadvantage: works poorly in open-loop mode
o In this case the kind of inputs that it will see during training time could be quite different from
that it will see at test time

10

Teacher Forcing (cont)

11

Computing the gradient

e Based on equations on slide 5
8L AL oL
(VooL); = — = sy =5
do: oL\ do;

1

Vh(,-) L — VT VO(,—) L

o (€[t-1,1] T |
oht+1) do®
th)L — (BTG (Vh(htl)L) += i, = 0 (Vo(t)L)

2 _
— W diag (1 - (h““)) > (VrasL) + VT (VL)

Computing the gradient (cont)

VL

VL

VvL

VulL

Ho(t) !

;(He > Voo L= fZVO(,JL,

I () .
> (%) ot = S (1- (1)) vy
t t

Z Z(.) Vy® 05” = Z (Vo L) "
t Z

a()m r

13

RNN as Directed Graphical Models

e Ignoring the hidden units
e inefficient

RNN as Directed Graphical Models (cont)

e very efficient parametrization

from [1]

15

RNN as Directed Graphical Models (cont)

e Determining the length of the sequence
o Special symbol at the end of the sequence
o extra Bernoulli output
o Predicting sequence length ©

16

Modeling Sequences Conditioned on Context

e A single vector as input

17

Modeling Sequences Conditioned on Context (cont)

e A sequence of vectors
as input

Long Term Dependencies

e \anishing and exploding gradients in long-term propagation.
e Exponentially smaller magnitude of gradient for long term dependencies.

e Gradient based optimization is difficult.

19

Why do we want longterm dependencies?

I grew up in [France ... I speak fluent

hs

N~

Reference: RNNII, DLVR, Lecture by Dr. Michael Weinmann, Informatik, University of Bonn

French

20

Long Short Term
Memory (LSTM)

output

self-loop

input input gate

/N /\

Figure: LSTM recurrent network cell block diagram.
Reference: RNNII, DLVR, Lecture by Dr. Michael Weinmann, Informatik, University of Bonn

orget gate output gate

21

Ct h, o(Wyw + bg): Forget Gate

i i o(W;w + b;): Input Gate

tanh(c,) o(W,ow + b,) o(W,w +b,): Output Gate

fi

w = [x¢; he_q]

Ct—1 h,_, Xt

Figure: LSTM with gate equations.

Reference: RNNII, DLVR, Lecture by Dr. Michael Weinmann, Informatik, University of Bonn

22

The LSTM is a differentiable memory cell. We have now three gates: an input
gate i(!), a forgetting gate f*’and an output gate o'*):

i) = g;(R*1,2%);0,)
IO =gy (R D, 2'%;0;)
o't — go(h(t_l),a:(t);ﬂo)

We now define a memory cell ¢*) by gating previous memory and new content
c = £ . (=D 1 i) . tanh(a”) where a'¥ =b+ Wh'~D + Uz®,
The final hidden state is a gated activation of the memory cell:

h(LtS)TM — oY) . tanh .

Reference: RNNII, DLVR, Lecture by Dr. Michael Weinmann, Informatik, University of Bonn 23

Gated Recurrent Unit

b,

h,

Reference: RNNII, DLVR, Lecture by Dr. Michael Weinmann, Informatik, University of Bonn

o(W.v + bg):
oc(W,v +b,):

B x :

———tanh(W.x; + h; + by,)
Zy
ot -
o(W.w + by) o(W,w +by,) Wih,
w = [X¢; hya]

Xt

Update Gate

24

References

[1] lan Goodfellow, Yoshua Bengio, and Aaron Courville. Deep Learning.
http://www.deeplearningbook.org. MIT Press, 2016.

[2] RNNII, DLVR, Lecture by Dr. Michael Weinmann, Informatik, University of Bonn

25

http://www.deeplearningbook.org

