Recurrent Neural Networks

Seminar Principles of Data Mining and Learning Algorithms

Gular Shukurova Sheikh Mastura Farzana

Outline

•	Unfolding Computational Graphs	(10.1)
•	Recurrent Neural Networks	(10.2.1)
•	Gradient Computation	(10.2.2)
•	RNNs as Directed Graphical Models	(10.2.3)
•	Modeling Sequences Conditioned on Context	t (10.2.4)
•	Long Term Dependencies	(10.7)
•	Gated RNNs	(10.10)

Unfolding Computational Graphs

• Expressing a recurrent computation into a computational graph

$$\boldsymbol{s}^{(t)} = f(\boldsymbol{s}^{(t-1)}; \boldsymbol{\theta})$$

For t=3
$$\begin{split} \boldsymbol{s}^{(3)} =& f(\boldsymbol{s}^{(2)}; \boldsymbol{\theta}) \\ &= f(f(\boldsymbol{s}^{(1)}; \boldsymbol{\theta}); \boldsymbol{\theta}). \end{split}$$

Example

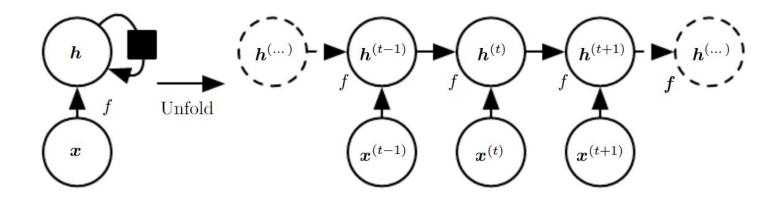


Figure: (left) Circuit Diagram, (right) unfolded computational graph, each node associated to a single timestep.

Reference: Ian Goodfellow, Yoshua Bengio, and Aaron Courville. Deep Learning. http://www.deeplearningbook.org. MIT Press, 2016.

Computation

Rewriting the equation from previous slide with h(t):

$$\boldsymbol{h}^{(t)} = f(\boldsymbol{h}^{(t-1)}, \boldsymbol{x}^{(t)}; \boldsymbol{\theta})$$

The unfolded recurrence after t steps represented with a function g(t):

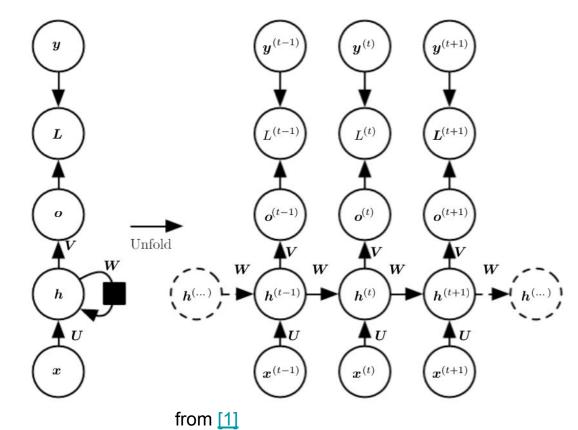
$$\boldsymbol{h}^{(t)} = g^{(t)}(\boldsymbol{x}^{(t)}, \boldsymbol{x}^{(t-1)}, \boldsymbol{x}^{(t-2)}, \dots, \boldsymbol{x}^{(2)}, \boldsymbol{x}^{(1)}) = f(\boldsymbol{h}^{(t-1)}, \boldsymbol{x}^{(t)}; \boldsymbol{\theta}).$$

Recurrent Neural Networks

- Recurrent Neural Networks (RNNs) are a class of neural networks for processing sequential data.
- RNNs use **feedback loops** to process a sequence of data that allow information to persist.
- Reducing the complexity of parameters by **parameter sharing**
- A powerful tool in applications like text processing, speech recognition, language translation and DNA sequences, where the output depends on the previous computations.

RNNs by examples

• Example #1



RNNs by examples (cont)

• Forward propagation, *t*∈[1, τ]:

$$egin{array}{rcl} m{a}^{(t)} &= m{b} + m{W} m{h}^{(t-1)} + m{U} m{x}^{(t)}, \ m{h}^{(t)} &= ext{tanh}(m{a}^{(t)}), \ m{o}^{(t)} &= m{c} + m{V} m{h}^{(t)}, \ m{\hat{y}}^{(t)} &= ext{softmax}(m{o}^{(t)}), \end{array}$$

• Total loss:

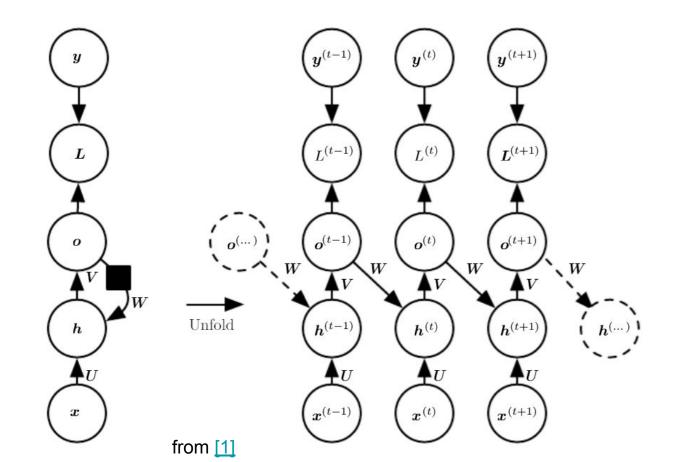
$$L\left(\{x^{(1)}, \dots, x^{(\tau)}\}, \{y^{(1)}, \dots, y^{(\tau)}\}\right)$$

$$= \sum_{t} L^{(t)}$$

$$= -\sum_{t} \log p_{\text{model}}\left(y^{(t)} \mid \{x^{(1)}, \dots, x^{(t)}\}\right)$$

RNNs by examples (cont)

• Example #2



9

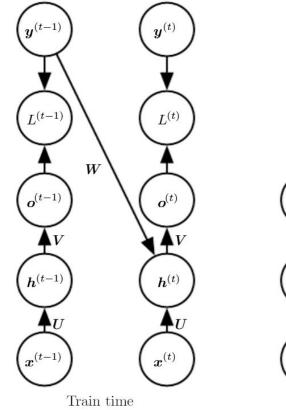
Teacher Forcing

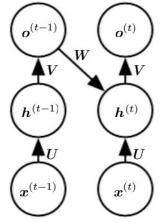
• Conditional maximum likelihood criterion:

$$\log p\left(\boldsymbol{y}^{(1)}, \boldsymbol{y}^{(2)} \mid \boldsymbol{x}^{(1)}, \boldsymbol{x}^{(2)}\right) \\ = \log p\left(\boldsymbol{y}^{(2)} \mid \boldsymbol{y}^{(1)}, \boldsymbol{x}^{(1)}, \boldsymbol{x}^{(2)}\right) + \log p\left(\boldsymbol{y}^{(1)} \mid \boldsymbol{x}^{(1)}, \boldsymbol{x}^{(2)}\right)$$

- Advantage: to avoid **BPTT** in models that lack hidden-to-hidden connections
- Disadvantage: works poorly in **open-loop** mode
 - In this case the kind of inputs that it will see during training time could be quite different from that it will see at test time

Teacher Forcing (cont)





Test time

from [1]

Computing the gradient

• Based on equations on <u>slide 5</u>

$$\left(\nabla_{\boldsymbol{o}^{(t)}}L\right)_{i} = \frac{\partial L}{\partial o_{i}^{(t)}} = \frac{\partial L}{\partial L^{(t)}} \frac{\partial L^{(t)}}{\partial o_{i}^{(t)}} = \hat{y}_{i}^{(t)} - \mathbf{1}_{i=y^{(t)}}$$

•
$$t = \tau$$
:
 $\nabla_{h^{(\tau)}} L = V^{\top} \nabla_{o^{(\tau)}} L$

•
$$t \in [\tau - 1, 1]$$

 $\nabla_{\boldsymbol{h}^{(t)}} L = \left(\frac{\partial \boldsymbol{h}^{(t+1)}}{\partial \boldsymbol{h}^{(t)}}\right)^{\top} (\nabla_{\boldsymbol{h}^{(t+1)}} L) + \left(\frac{\partial \boldsymbol{o}^{(t)}}{\partial \boldsymbol{h}^{(t)}}\right)^{\top} (\nabla_{\boldsymbol{o}^{(t)}} L)$
 $= \boldsymbol{W}^{\top} \operatorname{diag} \left(1 - \left(\boldsymbol{h}^{(t+1)}\right)^{2}\right) (\nabla_{\boldsymbol{h}^{(t+1)}} L) + \boldsymbol{V}^{\top} (\nabla_{\boldsymbol{o}^{(t)}} L)$

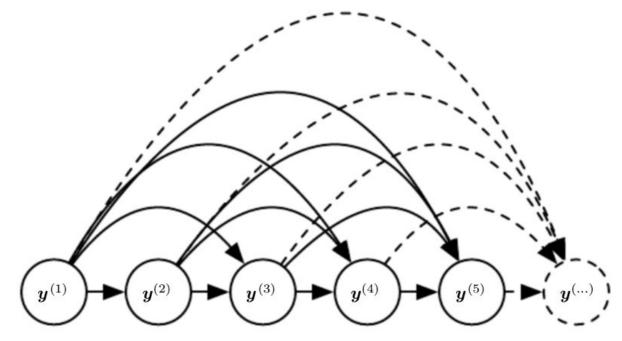
Computing the gradient (cont)

$$\begin{aligned} \nabla_{\boldsymbol{c}} L &= \sum_{t} \left(\frac{\partial \boldsymbol{o}^{(t)}}{\partial \boldsymbol{c}} \right)^{\top} \nabla_{\boldsymbol{o}^{(t)}} L = \sum_{t} \nabla_{\boldsymbol{o}^{(t)}} L, \\ \nabla_{\boldsymbol{b}} L &= \sum_{t} \left(\frac{\partial \boldsymbol{h}^{(t)}}{\partial \boldsymbol{b}^{(t)}} \right)^{\top} \nabla_{\boldsymbol{h}^{(t)}} L = \sum_{t} \operatorname{diag} \left(1 - \left(\boldsymbol{h}^{(t)} \right)^{2} \right) \nabla_{\boldsymbol{h}^{(t)}} L, \\ \nabla_{\boldsymbol{V}} L &= \sum_{t} \sum_{i} \left(\frac{\partial L}{\partial o_{i}^{(t)}} \right) \nabla_{\boldsymbol{V}^{(t)}} o_{i}^{(t)} = \sum_{t} \left(\nabla_{\boldsymbol{o}^{(t)}} L \right) \boldsymbol{h}^{(t)^{\top}}, \\ \nabla_{\boldsymbol{W}} L &= \sum_{t} \sum_{i} \left(\frac{\partial L}{\partial h_{i}^{(t)}} \right) \nabla_{\boldsymbol{W}^{(t)}} h_{i}^{(t)} \\ &= \sum_{t} \operatorname{diag} \left(1 - \left(\boldsymbol{h}^{(t)} \right)^{2} \right) \left(\nabla_{\boldsymbol{h}^{(t)}} L \right) \boldsymbol{h}^{(t-1)^{\top}}, \\ \nabla_{\boldsymbol{U}} L &= \sum_{t} \sum_{i} \left(\frac{\partial L}{\partial h_{i}^{(t)}} \right) \nabla_{\boldsymbol{U}^{(t)}} h_{i}^{(t)} \\ &= \sum_{t} \operatorname{diag} \left(1 - \left(\boldsymbol{h}^{(t)} \right)^{2} \right) \left(\nabla_{\boldsymbol{h}^{(t)}} L \right) \boldsymbol{x}^{(t)^{\top}}, \end{aligned}$$

13

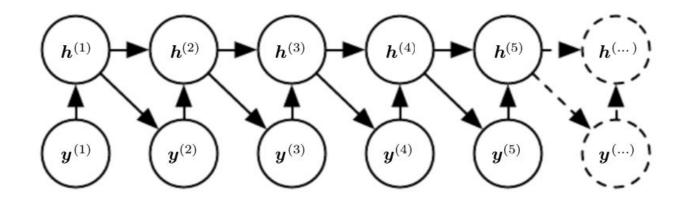
RNN as Directed Graphical Models

- Ignoring the hidden units
- inefficient



RNN as Directed Graphical Models (cont)

• very efficient parametrization



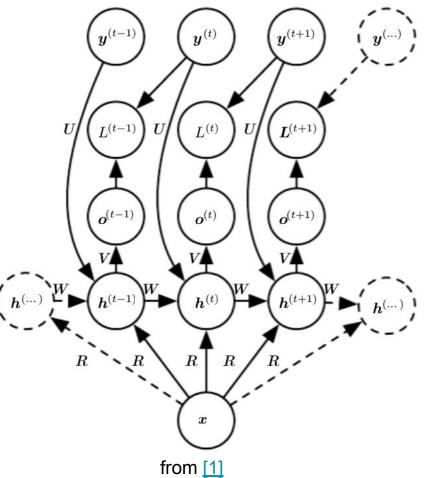
RNN as Directed Graphical Models (cont)

• Determining the length of the sequence

- Special symbol at the end of the sequence
- extra Bernoulli output
- $\circ \quad \ \ \text{Predicting sequence length } \tau$

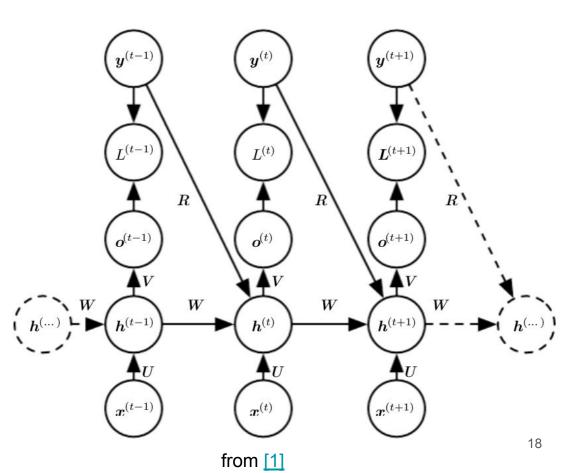
Modeling Sequences Conditioned on Context

• A single vector as input



Modeling Sequences Conditioned on Context (cont)

• A sequence of vectors as input



Long Term Dependencies

- Vanishing and exploding gradients in long-term propagation.
- Exponentially smaller magnitude of gradient for long term dependencies.
- Gradient based optimization is difficult.

Why do we want longterm dependencies?

Ι France fluent French Ι in speak grew up \mathbf{h}_1 \mathbf{h}_2 \mathbf{h}_3 \mathbf{h}_4 \mathbf{h}_5 \mathbf{h}_n \mathbf{x}_1 \mathbf{x}_2 \mathbf{x}_3 \mathbf{x}_4 \mathbf{x}_5 \mathbf{x}_n

Reference: RNNII, DLVR, Lecture by Dr. Michael Weinmann, Informatik, University of Bonn

Long Short Term Memory (LSTM)

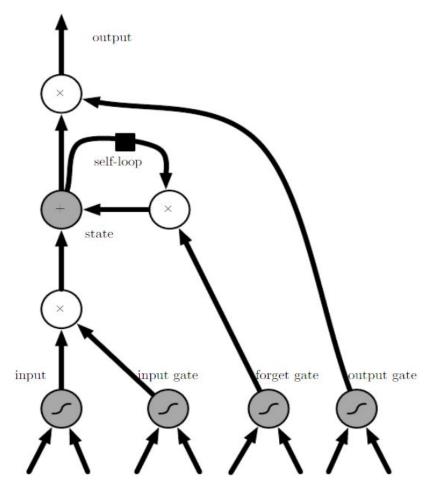


Figure: LSTM recurrent network cell block diagram. Reference: RNNII, DLVR, Lecture by Dr. Michael Weinmann, Informatik, University of Bonn

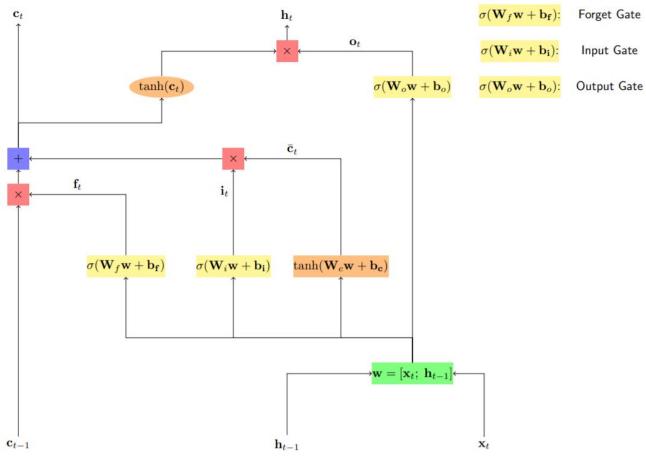


Figure: LSTM with gate equations.

Reference: RNNII, DLVR, Lecture by Dr. Michael Weinmann, Informatik, University of Bonn

The LSTM is a differentiable memory cell. We have now three gates: an input gate $i^{(t)}$, a forgetting gate $f^{(t)}$ and an output gate $o^{(t)}$:

$$egin{aligned} &m{i}^{(t)} = g_i(m{h}^{(t-1)}, m{x}^{(t)}; m{ heta}_i) \ &m{f}^{(t)} = g_f(m{h}^{(t-1)}, m{x}^{(t)}; m{ heta}_f) \ &m{o}^{(t)} = g_o(m{h}^{(t-1)}, m{x}^{(t)}; m{ heta}_o) \end{aligned}$$

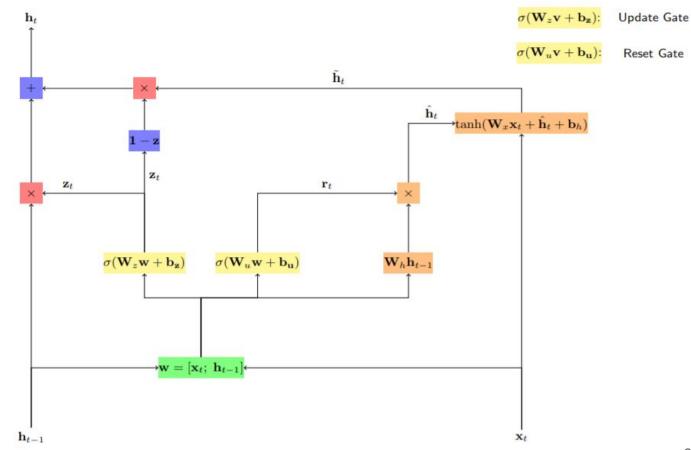
We now define a memory cell $c^{(t)}$ by gating previous memory and new content

$$oldsymbol{c}^{(t)} = oldsymbol{f}^{(t)} \cdot oldsymbol{c}^{(t-1)} + oldsymbol{i}^{(t)} \cdot anh(oldsymbol{a}^{(t)})$$
 where $oldsymbol{a}^{(t)} = oldsymbol{b} + oldsymbol{W}oldsymbol{h}^{(t-1)} + oldsymbol{U}oldsymbol{x}^{(t)}.$

The final hidden state is a gated activation of the memory cell:

$$\boldsymbol{h}_{\mathsf{LSTM}}^{(t)} = \boldsymbol{o}^{(t)} \cdot \tanh \boldsymbol{c}^{(t)}.$$

Gated Recurrent Unit



- [1] Ian Goodfellow, Yoshua Bengio, and Aaron Courville. Deep Learning. <u>http://www.deeplearningbook.org</u>. MIT Press, 2016.
- [2] RNNII, DLVR, Lecture by Dr. Michael Weinmann, Informatik, University of Bonn