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Outline

e Unfolding Computational Graphs (10.1)

e Recurrent Neural Networks (10.2.1)
e Gradient Computation (10.2.2)
e RNNs as Directed Graphical Models (10.2.3)

e Modeling Sequences Conditioned on Context (10.2.4)
e Long Term Dependencies (10.7)
e Gated RNNs (10.10)



Unfolding Computational Graphs

e EXxpressing a recurrent computation into a computational graph

Gl — f(s(t—l); 0)

For t=3
s =f(s2). )
=f(f(s";6);0).



Example

¥ Unfold

Figure: (left) Circuit Diagram, (right) unfolded computational graph, each node associated to a single timestep.

Reference: lan Goodfellow, Yoshua Bengio, and Aaron Courville. Deep Learning. http://www.deeplearningbook.org. MIT Press, 2016.



Computation

Rewriting the equation from previous slide with h(t):

A — f(RtD 2. )
The unfolded recurrence after t steps represented with a function g(t):
h(t) :g(t) (a:(t), p(t—1) ’ p(t—2) . ,w(Q), m(l))
=f(B" 1,2l 9).



Recurrent Neural Networks

e Recurrent Neural Networks (RNNs) are a class of neural networks for
processing sequential data.

e RNNs use feedback loops to process a sequence of data that allow
information to persist.

e Reducing the complexity of parameters by parameter sharing

e A powerful tool in applications like text processing, speech recognition,
language translation and DNA sequences, where the output depends on the
previous computations.



RNNs by examples

e Example #1

Y

Unfold




RNNs by examples (cont)

e Forward propagation, t€[1, 1]

a® = b+ WhtD L Uz®,
h() = tanh(a®),

o® — ¢4+ Vh®,

Q(f) — Soft.maX(O(t)),

e Total loss:



RNNs by examples (cont)

e Example #2 °




Teacher Forcing

e Conditional maximum likelihood criterion:

o <y(1) 2) | V) (z>)
—Jogp (y<2) |y<1>,m<1),m<2)) +logp (ym |w(1)7m(2>>

e Advantage: to avoid BPTT in models that lack hidden-to-hidden connections

e Disadvantage: works poorly in open-loop mode
o In this case the kind of inputs that it will see during training time could be quite different from
that it will see at test time
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Teacher Forcing (cont)
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Computing the gradient

e Based on equations on slide 5
8L AL oL
(VooL); = — = sy =5
do: oL\ do;

1
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Computing the gradient (cont)
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RNN as Directed Graphical Models

e Ignoring the hidden units
e inefficient




RNN as Directed Graphical Models (cont)

e very efficient parametrization

from [1]
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RNN as Directed Graphical Models (cont)

e Determining the length of the sequence
o Special symbol at the end of the sequence
o extra Bernoulli output
o Predicting sequence length ©
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Modeling Sequences Conditioned on Context

e A single vector as input
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Modeling Sequences Conditioned on Context (cont)

e A sequence of vectors
as input




Long Term Dependencies

e \anishing and exploding gradients in long-term propagation.
e Exponentially smaller magnitude of gradient for long term dependencies.

e Gradient based optimization is difficult.
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Why do we want longterm dependencies?

I grew up in [France ... I speak fluent

hs

N~

Reference: RNNII, DLVR, Lecture by Dr. Michael Weinmann, Informatik, University of Bonn

French
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Long Short Term
Memory (LSTM)

output

self-loop

input input gate

/N /\

Figure: LSTM recurrent network cell block diagram.
Reference: RNNII, DLVR, Lecture by Dr. Michael Weinmann, Informatik, University of Bonn

orget gate output gate
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Ct h, o(Wyw + bg):  Forget Gate

i i o(W;w + b;):  Input Gate

tanh(c,) o(W,ow + b,) o(W,w +b,): Output Gate

fi

w = [x¢; he_q]

Ct—1 h,_, Xt

Figure: LSTM with gate equations.

Reference: RNNII, DLVR, Lecture by Dr. Michael Weinmann, Informatik, University of Bonn
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The LSTM is a differentiable memory cell. We have now three gates: an input
gate i(!), a forgetting gate f*’and an output gate o'*):

i) = g;(R*1,2%);0,)
IO =gy (R D, 2'%;0;)
o't — go(h(t_l),a:(t);ﬂo)

We now define a memory cell ¢*) by gating previous memory and new content
c = £ . (=D 1 i) . tanh(a”) where a'¥ =b+ Wh'~D + Uz®,
The final hidden state is a gated activation of the memory cell:

h(LtS)TM — oY) . tanh .

Reference: RNNII, DLVR, Lecture by Dr. Michael Weinmann, Informatik, University of Bonn 23



Gated Recurrent Unit

b,

h,

Reference: RNNII, DLVR, Lecture by Dr. Michael Weinmann, Informatik, University of Bonn

o(W.v + bg):
oc(W,v +b,):

B x :

———tanh(W.x; + h; + by,)
Zy
ot -
o(W.w + by) o(W,w +by,) Wih,
w = [X¢; hya]

Xt

Update Gate
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