Recurrent Neural Networks

Seminar Principles of Data Mining and Learning Algorithms

Gular Shukurova Sheikh Mastura Farzana

Outline

Unfolding Computational Graphs

● Expressing a recurrent computation into a computational graph

$$
\boldsymbol{s}^{(t)} = f(\boldsymbol{s}^{(t-1)};\boldsymbol{\theta})
$$

For t=3

$$
\mathbf{s}^{(3)} = f(\mathbf{s}^{(2)}; \boldsymbol{\theta}) \n= f(f(\mathbf{s}^{(1)}; \boldsymbol{\theta}); \boldsymbol{\theta}).
$$

Example

Figure: (left) Circuit Diagram, (right) unfolded computational graph, each node associated to a single timestep.

Reference: Ian Goodfellow, Yoshua Bengio, and Aaron Courville. Deep Learning. http://www.deeplearningbook.org. MIT Press, 2016.

Computation

Rewriting the equation from previous slide with h(t):

$$
\boldsymbol{h}^{(t)} = f(\boldsymbol{h}^{(t-1)}, \boldsymbol{x}^{(t)}; \boldsymbol{\theta})
$$

The unfolded recurrence after t steps represented with a function g(t):

$$
\mathbf{h}^{(t)} = g^{(t)}(\mathbf{x}^{(t)}, \mathbf{x}^{(t-1)}, \mathbf{x}^{(t-2)}, \dots, \mathbf{x}^{(2)}, \mathbf{x}^{(1)})
$$

= $f(\mathbf{h}^{(t-1)}, \mathbf{x}^{(t)}; \boldsymbol{\theta}).$

Recurrent Neural Networks

- **Recurrent Neural Networks (RNNs)** are a class of neural networks for processing sequential data.
- RNNs use **feedback loops** to process a sequence of data that allow information to persist.
- Reducing the complexity of parameters by **parameter sharing**
- A powerful tool in applications like text processing, speech recognition, language translation and DNA sequences, where the output depends on the previous computations.

RNNs by examples

● Example #1

RNNs by examples (cont)

● Forward propagation, *t*∊*[1,]*:

$$
\begin{array}{rcl}\n\boldsymbol{a}^{(t)} & = & \boldsymbol{b} + \boldsymbol{W} \boldsymbol{h}^{(t-1)} + \boldsymbol{U} \boldsymbol{x}^{(t)}, \\
\boldsymbol{h}^{(t)} & = & \tanh(\boldsymbol{a}^{(t)}), \\
\boldsymbol{o}^{(t)} & = & \boldsymbol{c} + \boldsymbol{V} \boldsymbol{h}^{(t)}, \\
\hat{\boldsymbol{y}}^{(t)} & = & \text{softmax}(\boldsymbol{o}^{(t)}),\n\end{array}
$$

• Total loss:
\n
$$
L\left(\{\boldsymbol{x}^{(1)}, \ldots, \boldsymbol{x}^{(\tau)}\}, \{\boldsymbol{y}^{(1)}, \ldots, \boldsymbol{y}^{(\tau)}\}\right)
$$
\n
$$
= \sum_{t} L^{(t)} \log p_{\text{model}}\left(y^{(t)} | \{\boldsymbol{x}^{(1)}, \ldots, \boldsymbol{x}^{(t)}\}\right)
$$

RNNs by examples (cont)

9

Teacher Forcing

● Conditional maximum likelihood criterion:

$$
\begin{aligned} &\log p\left(\bm{y}^{(1)}, \bm{y}^{(2)} \mid \bm{x}^{(1)}, \bm{x}^{(2)}\right) \\ =&\log p\left(\bm{y}^{(2)} \mid \bm{y}^{(1)}, \bm{x}^{(1)}, \bm{x}^{(2)}\right) + \log p\left(\bm{y}^{(1)} \mid \bm{x}^{(1)}, \bm{x}^{(2)}\right) \end{aligned}
$$

- Advantage: to avoid **BPTT** in models that lack hidden-to-hidden connections
- Disadvantage: works poorly in **open-loop** mode
	- In this case the kind of inputs that it will see during training time could be quite different from that it will see at test time

Teacher Forcing (cont)

 $\operatorname{\mathsf{Test}}$ time

from 11

Computing the gradient

Based on equations on slide 5 \bullet

$$
\left(\nabla_{\mathbf{o}^{(t)}}L\right)_i = \frac{\partial L}{\partial o_i^{(t)}} = \frac{\partial L}{\partial L^{(t)}}\frac{\partial L^{(t)}}{\partial o_i^{(t)}} = \hat{y}_i^{(t)} - \mathbf{1}_{i=y^{(t)}}
$$

 L

$$
\bullet \quad t = \tau: \qquad \qquad \nabla_{\pmb{h}^{(\tau)}} L = \pmb{V}^\top \nabla_{\pmb{o}^{(\tau)}}
$$

•
$$
t \in [\tau-1, 1]
$$

\n
$$
\nabla_{\mathbf{h}^{(t)}} L = \left(\frac{\partial \mathbf{h}^{(t+1)}}{\partial \mathbf{h}^{(t)}}\right)^{\top} (\nabla_{\mathbf{h}^{(t+1)}} L) + \left(\frac{\partial \mathbf{o}^{(t)}}{\partial \mathbf{h}^{(t)}}\right)^{\top} (\nabla_{\mathbf{o}^{(t)}} L)
$$
\n
$$
= \mathbf{W}^{\top} \text{diag}\left(1 - \left(\mathbf{h}^{(t+1)}\right)^2\right) (\nabla_{\mathbf{h}^{(t+1)}} L) + \mathbf{V}^{\top} (\nabla_{\mathbf{o}^{(t)}} L)
$$

Computing the gradient (cont)

$$
\nabla_{\mathbf{c}} L = \sum_{t} \left(\frac{\partial \mathbf{o}^{(t)}}{\partial \mathbf{c}} \right)^{\top} \nabla_{\mathbf{o}^{(t)}} L = \sum_{t} \nabla_{\mathbf{o}^{(t)}} L,
$$
\n
$$
\nabla_{\mathbf{b}} L = \sum_{t} \left(\frac{\partial \mathbf{h}^{(t)}}{\partial \mathbf{b}^{(t)}} \right)^{\top} \nabla_{\mathbf{h}^{(t)}} L = \sum_{t} \text{diag} \left(1 - \left(\mathbf{h}^{(t)} \right)^{2} \right) \nabla_{\mathbf{h}^{(t)}} L,
$$
\n
$$
\nabla_{\mathbf{V}} L = \sum_{t} \sum_{i} \left(\frac{\partial L}{\partial o_{i}^{(t)}} \right) \nabla_{\mathbf{V}^{(t)}} o_{i}^{(t)} = \sum_{t} \left(\nabla_{\mathbf{o}^{(t)}} L \right) \mathbf{h}^{(t) \top},
$$
\n
$$
\nabla_{\mathbf{W}} L = \sum_{t} \sum_{i} \left(\frac{\partial L}{\partial h_{i}^{(t)}} \right) \nabla_{\mathbf{W}^{(t)}} h_{i}^{(t)}
$$
\n
$$
= \sum_{t} \text{diag} \left(1 - \left(\mathbf{h}^{(t)} \right)^{2} \right) \left(\nabla_{\mathbf{h}^{(t)}} L \right) \mathbf{h}^{(t-1) \top},
$$
\n
$$
\nabla_{\mathbf{U}} L = \sum_{t} \sum_{i} \left(\frac{\partial L}{\partial h_{i}^{(t)}} \right) \nabla_{\mathbf{U}^{(t)}} h_{i}^{(t)}
$$
\n
$$
= \sum_{t} \text{diag} \left(1 - \left(\mathbf{h}^{(t)} \right)^{2} \right) \left(\nabla_{\mathbf{h}^{(t)}} L \right) \mathbf{x}^{(t) \top},
$$

13

RNN as Directed Graphical Models

- **•** Ignoring the hidden units
- inefficient

RNN as Directed Graphical Models (cont)

very efficient parametrization \bullet

RNN as Directed Graphical Models (cont)

• Determining the length of the sequence

- Special symbol at the end of the sequence
- extra Bernoulli output
- \circ Predicting sequence length τ

Modeling Sequences Conditioned on Context

• A single vector as input

Modeling Sequences Conditioned on Context (cont)

● A sequence of vectors as input

Long Term Dependencies

- Vanishing and exploding gradients in long-term propagation.
- Exponentially smaller magnitude of gradient for long term dependencies.
- Gradient based optimization is difficult.

Why do we want longterm dependencies?

 \mathbf{I} France French speak fluent Ι grew in up \cdot \mathbf{h}_1 \mathbf{h}_n \mathbf{h}_2 \mathbf{h}_3 \mathbf{h}_4 \mathbf{h}_5 \mathbf{x}_1 \mathbf{x}_2 \mathbf{x}_3 \mathbf{x}_4 \mathbf{x}_5 \mathbf{x}_n

Reference: RNNII, DLVR, Lecture by Dr. Michael Weinmann, Informatik, University of Bonn

Long Short Term Memory (LSTM)

Figure: LSTM recurrent network cell block diagram. Reference: RNNII, DLVR, Lecture by Dr. Michael Weinmann, Informatik, University of Bonn

Figure: LSTM with gate equations.

The LSTM is a differentiable memory cell. We have now three gates: an input gate $i^{(t)}$, a forgetting gate $f^{(t)}$ and an output gate $o^{(t)}$:

$$
\begin{aligned} \boldsymbol{i}^{(t)} &= g_i(\boldsymbol{h}^{(t-1)}, \boldsymbol{x}^{(t)}; \boldsymbol{\theta}_i) \\ \boldsymbol{f}^{(t)} &= g_f(\boldsymbol{h}^{(t-1)}, \boldsymbol{x}^{(t)}; \boldsymbol{\theta}_f) \\ \boldsymbol{o}^{(t)} &= g_o(\boldsymbol{h}^{(t-1)}, \boldsymbol{x}^{(t)}; \boldsymbol{\theta}_o) \end{aligned}
$$

We now define a memory cell $c^{(t)}$ by gating previous memory and new content

$$
\boldsymbol{c}^{(t)} = \boldsymbol{f}^{(t)} \cdot \boldsymbol{c}^{(t-1)} + \boldsymbol{i}^{(t)} \cdot \tanh(\boldsymbol{a}^{(t)}) \quad \text{where} \quad \boldsymbol{a}^{(t)} = \boldsymbol{b} + \boldsymbol{W} \boldsymbol{h}^{(t-1)} + \boldsymbol{U} \boldsymbol{x}^{(t)}.
$$

The final hidden state is a gated activation of the memory cell:

$$
\boldsymbol{h}^{(t)}_{\text{LSTM}} = \boldsymbol{o}^{(t)} \cdot \tanh \boldsymbol{c}^{(t)}.
$$

Gated Recurrent Unit

- [1] Ian Goodfellow, Yoshua Bengio, and Aaron Courville. Deep Learning. <http://www.deeplearningbook.org>. MIT Press, 2016.
- [2] RNNII, DLVR, Lecture by Dr. Michael Weinmann, Informatik, University of Bonn