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Outline

● Unfolding Computational Graphs (10.1)

● Recurrent Neural Networks (10.2.1)

● Gradient Computation (10.2.2)

● RNNs as Directed Graphical Models (10.2.3)

● Modeling Sequences Conditioned on Context (10.2.4)

● Long Term Dependencies (10.7)

● Gated RNNs (10.10)
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Unfolding Computational Graphs

● Expressing a recurrent computation into a computational graph

For t=3
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Example

Figure: (left) Circuit Diagram, (right) unfolded computational graph, each node associated to a single timestep.

Reference: Ian Goodfellow, Yoshua Bengio, and Aaron Courville. Deep Learning. http://www.deeplearningbook.org. MIT Press, 2016.
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Computation

Rewriting the equation from previous slide with h(t):

The unfolded recurrence after t steps represented with a function g(t):

5



● Recurrent Neural Networks (RNNs) are a class of neural networks for 
processing sequential data.

● RNNs use feedback loops to process a sequence of data that allow 
information to persist.

● Reducing the complexity of parameters by parameter sharing
● A powerful tool in applications like text processing, speech recognition, 

language translation and DNA sequences, where the output depends on the 
previous computations.
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RNNs by examples

● Example #1

from [1]
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RNNs by examples (cont)

● Forward propagation, t∊[1, 𝛕]:

● Total loss:

8



● Example #2

from [1]

RNNs by examples (cont)
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Teacher Forcing

● Conditional maximum likelihood criterion:

● Advantage: to avoid BPTT in models that lack hidden-to-hidden connections
● Disadvantage: works poorly in open-loop mode

○ In this case the kind of inputs that it will see during training time could be quite different from 
that it will see at test time
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Teacher Forcing (cont)

from [1]
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Computing the gradient

● Based on equations on slide 5

● t = 𝞽 :

● t∊[𝛕-1, 1] :
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Computing the gradient (cont)

13



RNN as Directed Graphical Models

● Ignoring the hidden units
● inefficient

from [1] 14



RNN as Directed Graphical Models (cont)

● very efficient parametrization

from [1] 15



● Determining the length of the sequence
○ Special symbol at the end of the sequence
○ extra Bernoulli output
○ Predicting sequence length 𝛕 

RNN as Directed Graphical Models (cont)
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Modeling Sequences Conditioned on Context

● A single vector as input

from [1]
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● A sequence of vectors
as input

Modeling Sequences Conditioned on Context (cont)

from [1]
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Long Term Dependencies

● Vanishing and exploding gradients in long-term propagation.

● Exponentially smaller magnitude of gradient for long term dependencies.

● Gradient based optimization is difficult.
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Reference: RNNII, DLVR, Lecture by Dr. Michael Weinmann, Informatik, University of Bonn 
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Long Short Term 
Memory (LSTM)

Figure: LSTM recurrent network cell block diagram.
Reference: RNNII, DLVR, Lecture by Dr. Michael Weinmann, Informatik, University of Bonn 
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Figure: LSTM with gate equations.

Reference: RNNII, DLVR, Lecture by Dr. Michael Weinmann, Informatik, University of Bonn 22



Reference: RNNII, DLVR, Lecture by Dr. Michael Weinmann, Informatik, University of Bonn 23



Gated Recurrent Unit

Reference: RNNII, DLVR, Lecture by Dr. Michael Weinmann, Informatik, University of Bonn
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