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Introduction

Main Problem: Overfitting!

Goal: Want to perform better on test data to a possible extend of
worser performance on training data.

Definition: Regularization
Define Regularization as “any modification we make to a learning
algorithm that is intended to reduce its generalization error but not
its training error.”

In practice those methods are more promising then searching for a
model with suited capacity!
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L1 Regularization or Ridge Regression

Regularized Objective Function:

J̃(θ;X , y) = J(θ;X , y) + αΩ(θ)

Where
α = [0,∞] is a hyperparameter
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Regularization Continued

L2 Parameter Regularization: Ridge Regression or Tikonohov
Regularization or Weight Decay

J̃(w ;X , y) =
α

2
wTw + J(w ;X , y)

Karim Baidar, Alexander Zorn 2. L1, L2 Regularization MA-INF 4209 3/31



Regularization Continued

L1: LASSO (Least Absolute Shrinkage and Selection Operator)
Regression

J̃(w ;X , y) = α‖w‖1 + J(w ;X , y)

where
‖w‖1 = Ω(θ) =

∑
i

|wi |
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Regularization Continued
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Data Augmentation

Idea: Solve the problem of processing Limited Data with less
diversity in order to get efficient results from the neural nets

Offline Augmentation: For smaller Dataset
Online Augmentation: For larger Dataset
where can we apply:
1. Speech Recognition
2. Object Recognition
3. Injecting Noise in the input to a neural network
Data Augmentation Techniques
1. Flip
2. Rotation
3. Scale
4. Crop
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Data Augmentation:

[Figure : www.kdnuggets.com]
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Noise Robustness

In some models Addition of noise at the input with variance is
equivalent to adding:

Ω(θ) =
∑
i

|wi |

[Figure : www.kdnuggets.com]
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[Figure : Idea from Support vector Machines]
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Noise Robustness

[Figure : Idea from Support vector Machines]
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Example

where
εi ∼ N (0, σ2)

x̃i = xi + εi

ŷ =
n∑

i=1

wixi

ỹ =
n∑

i=1

wi x̃i

ỹ =
n∑

i=1

wixi +
n∑

i=1

wiεi

ỹ = ŷ +
n∑

i=1

wiεi
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Noise Robustness

We are interested in
E [(ỹ−y)2]

E [(ỹ−y)2] = E [(ŷ +
n∑

i=1

wiεi − y)2

E [(ŷ−y)2] = E [((ŷ − y) + (
n∑

i=1

wiεi ))2]
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Noise Robustness

E [(ỹ−y)2] = E [(ŷ−y)2] + E [2(ŷ − y)
n∑

i=1

wiεi ] + E [(
n∑

i=1

wiεi )
2]

E [(ỹ−y)2] = E [(ŷ−y)2] + 0 + E [
n∑

i=1

w2
i ε

2
i ]

E [(ỹ−y)2] = E [(ŷ−y)2] + σ2
n∑

i=1

w2
i
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Semi Supervised Learning

Idea: Combines a small amount of labeled data with a large
amount of unlabeled data during training to Improve Learning
Accuracy

[Figure from semanticscholar.org]
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Semi Supervised Learning

Another Example:

1. P(x,y) denotes the joint distribution of x and y, i.e.,
corresponding to a training sample x, and have a label y

2. P(x) denotes the marginal distribution of x

3. In Semi-supervised Learning, we use both P(x,y) and P(x) to
estimate P(y|x)

4. We want to learn some representation h = f(x) such that
samples which are closer in the input space have similar
representations and a linear classifier in the new space achieves
better generalization error.

5. we can have a generative model of P(x) (or P(x, y)) which
shares parameters with the discriminative model.
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Multi Task Learning

Idea: Learning together can be a good regularizer

Multitask learning leads to better generalization when there is
actually some relationship between the tasks
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Early Stopping

Idea: One way to think of early stopping is as a very efficient
hyperparameter selection algorithm..
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Early Stopping
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Early Stopping
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Early Stopping
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Early Stopping
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Parameter Tying and Sharing

The previous techniques often penalized the parameters when
deviating from a constant.
Prior knowledge often need more tools in that direction.

Parameter Tying: Express that certain parameters should be close
to each other. Typically from two different models. Using L2
Regularization:

I Consider models A with w (A) and B with w (B).
I Outputs: ŷ (A) = f (w (A), x), ŷ (B) = f (w (B), x)

I Change Loss with additive Regularization term:
Ω(w (A),w (B)) := ||w (A) − w (B)||22
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Parameter Tying and Sharing

Parameter Sharing: force sets of parameters (in one or over
multiple models) to be equal.

Advantage: For each set only one weight has to be stored.
Enables huge networks!

Used heavily on CNN training in computer vision:
I When detecting features (e.g lines) the feature detector

applied to every pixelarea shares his weights with all detectors
for the same feature.

I Ability to recognise object independently of their translation or
size in the image.

I More details: 12st Jan. of 2021 Seminar Talk about CNNs
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Dropout

Goal: Improve generalization and speed up training.

Short: Training ensemble of all sub-networks of a NN.

Setting:
I Sub-networks: NN reduced by a set S of non output neurons.
I Bagging: Special kind of Bagged learning -> Manage k

different models and train them on k different datasets.
I Sample Sub-networks: Each Neuron from a non output layer

l gets assigned to S with probability 1− pl .
I typically 0.5 for hidden and 0.8 for input layers
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Sample Sub-networks:
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Training with Dropout

Train using the following routine:
I Sample a mask µ corresponding to a subnet N
I Train N on a minibatch with loss: J(θ, µ), stochastic gradient

descent
I change the weights of the orig NN
I iterate

This algorithm seeks to minimize Eµ(J(θ, µ)) unbiased estimator
but with exponentially many terms.

Only a tiny fraction of all models can be trained.
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Network transformation:

Very cheap additive costs for implementation!
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Prediction with Dropout

Not able to make predictions with the net as usual because e.g two
subnet with non intersecting hidden nodes are trained on the same
task their results would be added up in the whole NN.

Most used and computationally efficient method: weight scaling
inference rule

When doing a forward propagation for a prediction replace each
weight wn outgoing from neuron n (in layer l) with wn ∗ pl .
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Dropout Summary

Summarizing Dropout:
I computationally inexpensive fast tool for learning large models

(with n neurons)
I O(n) for constructing the transformed NN
I O(n) effort to sample a subnet
I training as usual but faster since smaller net

I More effective than the common regularization techniques (e.g
weight decay) due to [Srivastava et al. (2014)]

I Standard widely used tool for training and prior knowledge
integration.
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Adversarial Training

Motivation: NNs that solve a task on human level usually don’t
reach human understanding.

Suspected problem: Heavy use of linearity of NNs. A change of ε
on each output can change the output up to ε||w ||1

Goal: local constancy around training examples.

Solution: Train model on slightly modified (random noise)
instances where the output of the model is very different from the
teached one (adversarial example).
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Adversarial example
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