
Training Optimization I
Based on ”Deep Learning”

Penelope Mueck, Siba Mohsen

University of Bonn

08.12.2020

Penelope Mueck, Siba Mohsen (University of Bonn) Training Optimization I 08.12.2020 1 / 39

Motivation

[Lop16] [Rez16]
[Dai16]

Penelope Mueck, Siba Mohsen (University of Bonn) Training Optimization I 08.12.2020 2 / 39

Outline

1. How Learning Differs from Pure Optimization

2. Challenges in Neural Optimization

3. Basic Algorithms

4. Parameter Initialization Strategies

Penelope Mueck, Siba Mohsen (University of Bonn) Training Optimization I 08.12.2020 3 / 39

How Learning Differs from Pure
Optimization

Penelope Mueck, Siba Mohsen (University of Bonn) Training Optimization I 08.12.2020 4 / 39

Training Deep Learning Models
Optimize performance measure P defined w.r.t. test set

P can only be optimized indirectly → minimize the risk

J∗(θ) = E(x ,y)∼pdata [L(f (x ; θ), y)]

I pdata: data generating distribution
I L: per-example loss function
I f (x ; θ): predicted output when input is x
I y: target output

pdata is unknown → minimize empirical risk

E(x ,y)∼p̂data [L(f (x ; θ), y)] =
1

m

m∑
i=1

L(f (x ; θ), y)

Empirical risk minimization rarely used in deep learning
I Loss functions do not have useful derivatives
I Overfitting

Penelope Mueck, Siba Mohsen (University of Bonn) Training Optimization I 08.12.2020 5 / 39

Surrogate Loss Functions and Early Stopping

Instead of the loss function we often
minimize a surrogate loss function

Minimizing the surrogate loss function
halts when early stopping criterion is met

I Training often halts when surrogate loss
function still has large derivatives

Early stopping criterion is based on true
underlying loss function measured on the
validation set

Figure: Surrogate loss functions for 0-1 loss
[Ngu20].

Penelope Mueck, Siba Mohsen (University of Bonn) Training Optimization I 08.12.2020 6 / 39

Form of the Objective Function

Objective function decomposes as a sum over training examples

We compute each update to the parameters based on an expected value of the cost
function

Example: Maximum likelihood estimation

J(θ) = E(x ,y)∼p̂data log pmodel(x , y ; θ)

∇θJ(θ) = E(x ,y)∼p̂data∇θ log pmodel(x , y ; θ)

Penelope Mueck, Siba Mohsen (University of Bonn) Training Optimization I 08.12.2020 7 / 39

Batch, online and Stochastic Methods

Batch methods: Optimization algorithms that use the entire training set

Online methods: Optimization algorithms that use only a single example at a time

Minibatch/Stochastic methods: Batch size between size for batch and online methods
→ used in deep learning

Penelope Mueck, Siba Mohsen (University of Bonn) Training Optimization I 08.12.2020 8 / 39

Stochastic Methods - How to Pick the Minibatches

How to pick the minibatches:
I Minibatches have to be selected randomly
I Subsequent minibatches should be independent of each other
I Shuffle examples if ordering is significant
I Special case very large datasets: minibatches are constructed from shuffled examples rather

than selected randomly

Factors influencing the size:
I Accuracy of estimate
I Regularization vs. optimization
I Hardware and memory
I Multicore architectures are underutilized by very small batches → define minimum batch size

Penelope Mueck, Siba Mohsen (University of Bonn) Training Optimization I 08.12.2020 9 / 39

Stochastic Gradient Descent Minimizes Generalization Error

Assumptions:

Examples are drawn from stream of data

x and y are discrete ⇒

J∗(θ) =
∑
x

∑
y

pdata(x , y)L(f (x ; θ), y)

∇θJ∗(θ) =
∑
x

∑
y

pdata(x , y)∇θL(f (x ; θ))

⇒ ĝ = 1
m∇θ

∑
i L(f (x (i); θ), y (i)) is an unbiased estimate of ∇θJ∗(θ) if we sample a

minibatch of examples {x (1), .., x (m)} with corresponding targets y (i) sampled from pdata

Penelope Mueck, Siba Mohsen (University of Bonn) Training Optimization I 08.12.2020 10 / 39

Challenges in Neural Optimization

Penelope Mueck, Siba Mohsen (University of Bonn) Training Optimization I 08.12.2020 11 / 39

Challenges Facing Optimization of Deep Neural Networks

Ill-Conditioning

Local Minima

Plateaus, Saddle points and other Flat
regions

Cliffs

Long-Term Dependencies

Poor Correspondence between Local and
Global Structure

Figure: Loss function during training a neural
network [Goe19].

Penelope Mueck, Siba Mohsen (University of Bonn) Training Optimization I 08.12.2020 12 / 39

Definitions (Recap)

I Given vector-valued function f : Rn → Rm

I f consists of m functions f1, . . . , fm : Rn → R
I Jacobian Matrix: J ∈ Rm×n, (J)i ,j = ∂fi

∂xj

J =

 ∇x f1 . . . ∇x fm


→ 1st-Order Optimization

I Hessian Matrix: H ∈ Rn×n, H(f)(x)i ,j := ∂
∂xi∂xj

f (x)

→ 2nd-Order Optimization

Penelope Mueck, Siba Mohsen (University of Bonn) Training Optimization I 08.12.2020 13 / 39

Conditioning

Figure: Gradient descent directions
during training [source].

1. Neural Networks are trained by changing
parameters based on an optimization algorithm
(e.g. Stochastic Gradient Descent)

2. Optimization algorithm searches for local/global
minima on loss function

3. Hessian matrix hints at curvature of functions
(convex)

4. Condition number of the Hessian measures the
difference between derivatives in each direction

Penelope Mueck, Siba Mohsen (University of Bonn) Training Optimization I 08.12.2020 14 / 39

https://www.quora.com/What-does-it-mean-to-have-a-poorly-conditioned-Hessian-matrix

Ill-Conditioning

Figure: Gradient descent directions
during training with ill-conditioned
Hessian [source].

Challenges: Poor conditioning imerges when the
condition number is high:

I gradient descent will perform poorly: which
direction will the gradient choose?

I choice of suitable step size becomes difficult:
smaller steps to adapt to strong curvature → slow
learning

Mitigation Techniques:
I Modification of Newton’s method then applying it

to the Neural Network
I Momentum Algorithm

Penelope Mueck, Siba Mohsen (University of Bonn) Training Optimization I 08.12.2020 15 / 39

https://www.quora.com/What-does-it-mean-to-have-a-poorly-conditioned-Hessian-matrix

Local Minima

Neural networks have nonconvex cost functions → several local minima

Neural Networks are nonidentifiable, because there are many possibilities to select
suitable weights during training

I Infinite number of local minima
I Equivalent to each other in cost value
I Not problematic

Challenge: Local minima have higher cost function value than global minimum

Mitigation Techniques:
I Most local minima present low cost function value
I It is sufficient to find a convenient local minimum instead of the global minimum

Penelope Mueck, Siba Mohsen (University of Bonn) Training Optimization I 08.12.2020 16 / 39

Plateaus, Saddle Points and other Flat Regions

Saddle points:

Most frequent in high dimensional nonconvex functions

Can be local minimum and maximum of cost function depending on point of view

How do 1st and 2nd order optimizations deal with saddle points?
I 1st order: The gradient becomes very small or escapes the point
I 2nd order: Challenges:

1. The gradient may go directly and sit on the saddle point (∇x f (x) = 0)
2. Hard to be used in huge NN

Mitigation Technique: Saddle-free Newton method by rapidly escaping high dimensional
saddle points [Dau+14]

Plateaus and Flat Regions:

Cause problems when optimizing nonconvex functions with no remediation techniques

Penelope Mueck, Siba Mohsen (University of Bonn) Training Optimization I 08.12.2020 17 / 39

Cliffs

Dangerous from both sides: above and below

Challenge: The gradient surpasses the cliff
structure because it only determines which direction
to choose and disregards step size

Mitigation Technique: Gradient Clipping
Heuristic (chapter 10) by reducing the step size to
prohibit the gradient to surpass the cliff

Figure: Cliff region [GBC16].

Penelope Mueck, Siba Mohsen (University of Bonn) Training Optimization I 08.12.2020 18 / 39

Long-Term Dependencies

Very deep computational graphs caused by big number of
layers in NN (e.g recurrent networks)

Challenges: Vanishing and Exploding gradient descent
I Vanishing GD: gradients don’t know which direction to

choose to improve the cost function
I Exploding GD: makes the learning process inconsistent

Mitigation Technique: Power method for recurrent and
feedforward neural networks to discard uninteresting features
in input vector

Figure: Computational Graph
[source]

Penelope Mueck, Siba Mohsen (University of Bonn) Training Optimization I 08.12.2020 19 / 39

https://blog.paperspace.com/pytorch-101-understanding-graphs-and-automatic-differentiation/

Example: Long-Term Dependencies

Suppose that a path of the computational graph applies a
repeated multiplication with a matrix W, where
W = Vdiag(λ)V−1 is the eigendecomposition of W.

After t multiplication steps, we are multiplying by Wt and
the eigendecomposition becomes Wt = Vdiag(λ)tV−1

The Vanishing and Exploding gradient descent problem arises
from scaling diag(λ)t .

The Power Method can be deployed to detect the largest
eigenvalue λi of W and its eigenvector and then to rule out
all components that are orthogonal to W.

Figure: Computational Graph
[source]

Penelope Mueck, Siba Mohsen (University of Bonn) Training Optimization I 08.12.2020 20 / 39

https://blog.paperspace.com/pytorch-101-understanding-graphs-and-automatic-differentiation/

Poor Correspondence between Local and Global Structure

Previous mitigation techniques solve the optimization problem at a single point on the
loss function to arrive to a low cost value

Challenge: Is this cost value sufficiently low w.r.t. other low values? Does this low value
drives the point into a much lower cost value (e.g. global minimum)?

Mitigation Techniques:
I Force the gradient to start at good points on the loss function to get faster into a convenient

minimum
I Do not concentrate on finding the exact minimum of the loss function, rather try to achieve

a low cost value that would generalize well

Penelope Mueck, Siba Mohsen (University of Bonn) Training Optimization I 08.12.2020 21 / 39

Basic Algorithms

Penelope Mueck, Siba Mohsen (University of Bonn) Training Optimization I 08.12.2020 22 / 39

SGD-Algorithm

Algorithm 1: Stochastic Gradient Descent (SGD) update

Require: Learning rate schedule ε1,ε2, ...
Require: Initial Parameter θ
Set k = 0;
while stopping criterion is not met do

Pick a minibatch of m examples from the training set {
(
x (1), y (1)

)
, . . . ,

(
x (m), y (m)

)
};

Compute gradient estimate: ĝ = 1
m∇θ

∑
i L
(
f (x (i); θ), y (i)

)
;

Apply update θ = θ − εk ĝ ;
k = k + 1 ;

end

Penelope Mueck, Siba Mohsen (University of Bonn) Training Optimization I 08.12.2020 23 / 39

SGD-Learning Rate εk

Tells how much to change the model based on the loss function

Decreases over time

To choose by trial and error or by depicting the learning curve over time

In practice: for α = k
τ , decrease εk linearly until iteration τ :

εk = (1− α)ε0 + αετ

I τ = number of iterations to make few hundred passes through NN
I ετ = ε0

100
I ε0 > best performing εk in the first iterations

Penelope Mueck, Siba Mohsen (University of Bonn) Training Optimization I 08.12.2020 24 / 39

SGD-Convergence and Computation

Allows convergence even with huge number of training examples

To calculate excess error for convergence: J(θ)−minθ J(θ)

SGD applied to a convex problem: excess error = O(1√
k

) after k iterations

SGD applied to a strongly convex problem: excess error = O(1
k) after k iterations

Penelope Mueck, Siba Mohsen (University of Bonn) Training Optimization I 08.12.2020 25 / 39

Momentum-Characteristics

Figure: Loss function during training of a neural network
[Goe19].

Momentum in physics: mass ×
velocity

Momentum is faster than SGD

Momentum fixes variance
problem in SGD caused by
computing inexact derivates of
the loss function

Momentum is robust to high
curvature and small/noisy
gradients

Penelope Mueck, Siba Mohsen (University of Bonn) Training Optimization I 08.12.2020 26 / 39

Momentum-Algorithm

Algorithm 2: Stochastic Gradient Descent (SGD) with momentum

Require: Learning rate ε, momentum parameter α
Require: Initial Parameter θ, initial velocity v
while stopping criterion is not met do

Pick a minibatch of m examples from the training set {
(
x (1), y (1)

)
, . . . ,

(
x (m), y (m)

)
};

Compute gradient estimate: g = 1
m∇θ

∑
i L
(
f (x (i); θ), y (i)

)
;

Compute velocity update: v = αv − εg ;
Apply update: θ = θ + v ;

end

Penelope Mueck, Siba Mohsen (University of Bonn) Training Optimization I 08.12.2020 27 / 39

Momentum-Parameters

Momentum algorithm accumulates a quickly decreasing average of past gradients and
uses them in the next move

Velocity v (momentum): direction and speed of parameters

Momentum parameter α ∈ [0, 1): determines how quickly the contributions of previous
gradients exponentially decrease and affect current move

In practice: α ∈ 0.5, 0.9, 0.99, increases over time

θ(t): Point on the loss function at time t

Penelope Mueck, Siba Mohsen (University of Bonn) Training Optimization I 08.12.2020 28 / 39

Nesterov Momentum

Adds correction factor to Momentum

Gradient step is evaluated after
application of momentum (velocity step)

New update rule:

g =
1

m
×∇θ ×

∑
i

L
(
f (x (i); θ + αv), y (i)

)
v = αv − εg
θ = θ + v

Figure: Momentum vs. Nesterov Momentum
update step [source].

Penelope Mueck, Siba Mohsen (University of Bonn) Training Optimization I 08.12.2020 29 / 39

https://cs231n.github.io/neural-networks-3/

Parameter Initialization Strategies

Penelope Mueck, Siba Mohsen (University of Bonn) Training Optimization I 08.12.2020 30 / 39

Initialization for Deep Learning

Training algorithms for deep learning are usually iterative → user has to specify an initial
point

Initial point affects
I convergence
I speed of convergence
I if we converge to a point with high or low cost → points of comparable cost can have a

different generalization error!

Penelope Mueck, Siba Mohsen (University of Bonn) Training Optimization I 08.12.2020 31 / 39

Characteristics of Initial Parameters

Most initialization strategies are based on achieving good properties when the network is
initialized

I No good understanding of how these properties are preserved during training
I Optimization vs. regularization

Certainly known: Initial parameters need to break symmetry between different units
I Hidden units with same activation function and connection to same input parameters must

have different initial parameters

→ Use random initialization

Penelope Mueck, Siba Mohsen (University of Bonn) Training Optimization I 08.12.2020 32 / 39

Random Initialization

Weights are initialized randomly

Values are drawn randomly from a Gaussian or uniform distribution

Scale of initial distribution has a large effect on the outcome → influences optimization
and generalization

I Larger weights lead to stronger symmetry-breaking effect
I Too large weights can cause exploding values during forward or backward-propagation or

saturation of the activation function
I Optimization perspective: weights should be large enough to propagate information

successfully
I Regularization: Keep weights small

Penelope Mueck, Siba Mohsen (University of Bonn) Training Optimization I 08.12.2020 33 / 39

Heuristics for Choosing Initial Scale of the Weights

1. Initialize weights by sampling each weight from U
(
− 1√

m
, 1√

m

)
I We assume we have a fully connected layer with m inputs and n outputs

2. Use normalized initialization: Wi ,j ∼ U
(
−
√

6
m+n ,

√
6

m+n

)
3. Initialize to random orthogonal matrices with gain factor g that needs to be carefully

chosen

4. Use sparse initialization: each unit is initialized to have exactly k nonzero weights

Optimal criteria for initial weights do not lead to optimal performance
I Treat initial weights as hyperparameters
I Treat initial scale of the weights and whether to use sparse or dense initialization as

hyperparameter if not too costly

Penelope Mueck, Siba Mohsen (University of Bonn) Training Optimization I 08.12.2020 34 / 39

Initializing the Biases

Approach for setting the biases must be coordinated with the approach for setting the
weights

Setting the biases to zero is compatible with most weight initialization schemes

Cases where biases may be set to nonzero values:
I If a bias is for an output unit → beneficial to initialize the bias to obtain the right marginal

statistics of the output
I When we want to avoid too much saturation at initialization
I When a unit controls whether other units are able to participate in a function

Penelope Mueck, Siba Mohsen (University of Bonn) Training Optimization I 08.12.2020 35 / 39

Questions

Penelope Mueck, Siba Mohsen (University of Bonn) Training Optimization I 08.12.2020 36 / 39

White Board

Penelope Mueck, Siba Mohsen (University of Bonn) Training Optimization I 08.12.2020 37 / 39

White Board

Penelope Mueck, Siba Mohsen (University of Bonn) Training Optimization I 08.12.2020 38 / 39

References
Yann N Dauphin et al. “Identifying and attacking the saddle point problem in
high-dimensional non-convex optimization”. In: Advances in neural information
processing systems. 2014, pp. 2933–2941.

Shaumik Daityari. “A Beginners Guide to Keras”. In: (2016). url:
%5Curl%7Bhttps://www.sitepoint.com/keras-digit-recognition-

tutorial/%7D.

Ian Goodfellow, Yoshua Bengio, and Aaron Courville. Deep Learning.
http://www.deeplearningbook.org. MIT Press, 2016.

Emilia Lopez-Inesta. In: (2016). url: %5Curl%7Bhttps:
//www.researchgate.net/profile/Emilia_Lopez-Inesta%7D.

Reza. “The Hard Thing in Deep Learning”. In: (2016). url:
%5Curl%7Bhttps://www.matroid.com/blog/post/the-hard-thing-about-

deep-learning%7D.

Dr. Nils Goerke. “TNNWS1903T rainingMLPswBPs lides.pdf ”. In: (2019). url:
https://www.ais.uni-bonn.de/WS1920/4204_L_NN.html.

XuanLong Nguyen. “Learning Models Using Sparse Tensors and Functional
Dependencies”. In: (2020). url:
%5Curl%7Bhttps://www.researchgate.net/figure/Illustrations-of-

the-0-1-loss-function-and-three-surrogate-loss-functions-hinge-

loss_fig1_220485537%7D.

Penelope Mueck, Siba Mohsen (University of Bonn) Training Optimization I 08.12.2020 39 / 39

%5Curl%7Bhttps://www.sitepoint.com/keras-digit-recognition-tutorial/%7D
%5Curl%7Bhttps://www.sitepoint.com/keras-digit-recognition-tutorial/%7D
http://www.deeplearningbook.org
%5Curl%7Bhttps://www.researchgate.net/profile/Emilia_Lopez-Inesta%7D
%5Curl%7Bhttps://www.researchgate.net/profile/Emilia_Lopez-Inesta%7D
%5Curl%7Bhttps://www.matroid.com/blog/post/the-hard-thing-about-deep-learning%7D
%5Curl%7Bhttps://www.matroid.com/blog/post/the-hard-thing-about-deep-learning%7D
https://www.ais.uni-bonn.de/WS1920/4204_L_NN.html
%5Curl%7Bhttps://www.researchgate.net/figure/Illustrations-of-the-0-1-loss-function-and-three-surrogate-loss-functions-hinge-loss_fig1_220485537%7D
%5Curl%7Bhttps://www.researchgate.net/figure/Illustrations-of-the-0-1-loss-function-and-three-surrogate-loss-functions-hinge-loss_fig1_220485537%7D
%5Curl%7Bhttps://www.researchgate.net/figure/Illustrations-of-the-0-1-loss-function-and-three-surrogate-loss-functions-hinge-loss_fig1_220485537%7D

	How Learning Differs from Pure Optimization
	Challenges in Neural Optimization
	Basic Algorithms
	Parameter Initialization Strategies
	References

