Training Optimization |
Based on "Deep Learning”
Penelope Mueck, Siba Mohsen

University of Bonn

08.12.2020

=] F = £ Haw
Penelope Mueck, Siba Mohsen (University of Bonn)

Motivation

I 5 PRV B H) R ' Hidden
.{a e o +‘.+ 4% I‘blﬁ"'. 'Fb | |nput
+ :& .. + % +* =5) o - “‘:“ | OUtpUt

[Dail6]

Penelope Mueck, Siba Mohsen (University of Bonn) 08.12.2020 2/39

Outline

1. How Learning Differs from Pure Optimization

2. Challenges in Neural Optimization
3. Basic Algorithms

4. Parameter Initialization Strategies

=] = = = nac
Penelope Mueck, Siba Mohsen (University of Bonn)

How Learning Differs from Pure
Optimization

Penelope Mueck, Siba Mohsen (University of Bonn) 08.12.2020 4/39

Training Deep Learning Models

@ Optimize performance measure P defined w.r.t. test set
@ P can only be optimized indirectly — minimize the risk

JH(0) = E(Xprdata[L((x;0),¥)]

Pdata: data generating distribution

L: per-example loss function

f(x; 0): predicted output when input is x
y: target output

vV vy VvYy

@ Pgata IS unknown — minimize empirical risk

m

E(Xﬂ}/)"‘ﬁdata [L(f(X 0 Z
=1

o Empirical risk minimization rarely used in deep learning
> Loss functions do not have useful derivatives
» Overfitting

Penelope Mueck, Siba Mohsen (University of Bonn) 08.12.2020 5/39

Surrogate Loss Functions and Early Stopping

w

- =+ Logistic
25", ‘

@ Instead of the loss function we often —
minimize a surrogate loss function
@ Minimizing the surrogate loss function %
halts when early stopping criterion is met 5
» Training often halts when surrogate loss 2

function still has large derivatives

o Early stopping criterion is based on true 0.5
underlying loss function measured on the .
1 1 -1 -0.5 0 0.5 1 15 2
validation set Margn value

Figure: Surrogate loss functions for 0-1 loss
[Ngu20].

Penelope Mueck, Siba Mohsen (University of Bonn) 08.12.2020 6/39

Form of the Objective Function

@ Objective function decomposes as a sum over training examples

@ We compute each update to the parameters based on an expected value of the cost
function

@ Example: Maximum likelihood estimation

J(a) = E(X7y)’\’ﬁdata Iog medEI(X7 yi 9)
VoJ(0) = E(x,y)~puaes V6 108 Pmodei (X, y; 0)

Penelope Mueck, Siba Mohsen (University of Bonn) 08.12.2020 7/39

Batch, online and Stochastic Methods

@ Batch methods: Optimization algorithms that use the entire training set
@ Online methods: Optimization algorithms that use only a single example at a time

e Minibatch/Stochastic methods: Batch size between size for batch and online methods
— used in deep learning

Penelope Mueck, Siba Mohsen (University of Bonn) 08.12.2020 8/39

Stochastic Methods - How to Pick the Minibatches

@ How to pick the minibatches:
» Minibatches have to be selected randomly
» Subsequent minibatches should be independent of each other
» Shuffle examples if ordering is significant
> Special case very large datasets: minibatches are constructed from shuffled examples rather
than selected randomly

@ Factors influencing the size:

» Accuracy of estimate

» Regularization vs. optimization

» Hardware and memory

» Multicore architectures are underutilized by very small batches — define minimum batch size

Penelope Mueck, Siba Mohsen (University of Bonn) 08.12.2020 9/39

Stochastic Gradient Descent Minimizes Generalization Error

Assumptions:

@ Examples are drawn from stream of data

@ x and y are discrete =

J(0) =D pdatalx, y)L(F(x: 0),)
Xy
VoJ*(0) = Z Z Pdata(X; ¥)VaL(f(x;0))

x oy

= g =1V, L(f(x\D;0),y()) is an unbiased estimate of VJ*(#) if we sample a
minibatch of examples {x(l), ..,x(’")} with corresponding targets y(!) sampled from pgata

Penelope Mueck, Siba Mohsen (University of Bonn) 08.12.2020 10/39

Challenges in Neural Optimization

Penelope Mueck, Siba Mohsen (University of Bonn) 08.12.2020 11/39

Challenges Facing Optimization of Deep Neural Networks

@ ll-Conditioning

@ Local Minima

o Plateaus, Saddle points and other Flat
regions

o Cliffs

@ Long-Term Dependencies

@ Poor Correspondence between Local and
Global Structure

fissured surface

steep valley

flat plateau

isolated point

suboptimal local minimum

global minimum

w17

Figure: Loss function during training a neural
network [Goel9].

Penelope Mueck, Siba Mohsen (University of Bonn) 08.12.2020 12/39

Definitions (Recap)

» Given vector-valued function f : R” — R™

» f consists of m functions f,...,fn : R" - R
» Jacobian Matrix: J € R™*", (J);; = g)’;
J=1| Vi ... Vifn

— 15t-Order Optimization
» Hessian Matrix: H € R"*", H(f)(x);, ax,axj f(x)
— 2"d_Order Optimization

Penelope Mueck, Siba Mohsen (University of Bonn) 08.12.2020 13/39

Conditioning

————

Figure: Gradient descent directions
during training [source].

Penelope Mueck, Siba Mohsen (University of Bonn)

. Neural Networks are trained by changing

parameters based on an optimization algorithm
(e.g. Stochastic Gradient Descent)

. Optimization algorithm searches for local/global

minima on loss function

. Hessian matrix hints at curvature of functions

(convex)

. Condition number of the Hessian measures the

difference between derivatives in each direction

08.12.2020

14/39

https://www.quora.com/What-does-it-mean-to-have-a-poorly-conditioned-Hessian-matrix

lll-Conditioning

@ Challenges: Poor conditioning imerges when the

condition number is high:
é » gradient descent will perform poorly: which
direction will the gradient choose?
» choice of suitable step size becomes difficult:

smaller steps to adapt to strong curvature — slow
learning

o Mitigation Techniques:

» Modification of Newton's method then applying it
Figure: Gradient descent directions to the Neural Network
during training with ill-conditioned » Momentum Algorithm
Hessian [source].

Penelope Mueck, Siba Mohsen (University of Bonn) 08.12.2020 15 /39

https://www.quora.com/What-does-it-mean-to-have-a-poorly-conditioned-Hessian-matrix

Local Minima

Neural networks have nonconvex cost functions — several local minima

Neural Networks are nonidentifiable, because there are many possibilities to select
suitable weights during training

» Infinite number of local minima

» Equivalent to each other in cost value

» Not problematic

Challenge: Local minima have higher cost function value than global minimum

Mitigation Techniques:

» Most local minima present low cost function value
» It is sufficient to find a convenient local minimum instead of the global minimum

Penelope Mueck, Siba Mohsen (University of Bonn) 08.12.2020 16 /39

Plateaus, Saddle Points and other Flat Regions

Saddle points:
@ Most frequent in high dimensional nonconvex functions
@ Can be local minimum and maximum of cost function depending on point of view

o How do 15t and 2" order optimizations deal with saddle points?

» 15t order: The gradient becomes very small or escapes the point
» 2" order: Challenges:

1. The gradient may go directly and sit on the saddle point (V.f(x) = 0)
2. Hard to be used in huge NN

Mitigation Technique: Saddle-free Newton method by rapidly escaping high dimensional
saddle points [Dau+14]

Plateaus and Flat Regions:

@ Cause problems when optimizing nonconvex functions with no remediation techniques

Penelope Mueck, Siba Mohsen (University of Bonn) 08.12.2020 17 /39

Cliffs

@ Dangerous from both sides: above and below

@ Challenge: The gradient surpasses the cliff
structure because it only determines which direction
to choose and disregards step size

o Mitigation Technique: Gradient Clipping
Heuristic (chapter 10) by reducing the step size to
prohibit the gradient to surpass the cliff Figure: CIiff region [GEC16].

J(ab)

Penelope Mueck, Siba Mohsen (University of Bonn) 08.12.2020 18/39

Long-Term Dependencies

@ Very deep computational graphs caused by big number of

: ()
layers in NN (e.g recurrent networks) =
@ Challenges: Vanishing and Exploding gradient descent a T
3c o
» Vanishing GD: gradients don't know which direction to ’) &)
- . b od s g
choose to improve the cost function @ % @ ab $ " Q1
» Exploding GD: makes the learning process inconsistent [2 a7l
Y
(wy) (w3

e Mitigation Technique: Power method for recurrent and
feedforward neural networks to discard uninteresting features

Figure: Computational Graph
in input vector

[source]

Penelope Mueck, Siba Mohsen (University of Bonn) 08.12.2020 19 /39

https://blog.paperspace.com/pytorch-101-understanding-graphs-and-automatic-differentiation/

Example: Long-Term Dependencies

@ Suppose that a path of the computational graph applies a
repeated multiplication with a matrix W, where
W = Vdiag(\)V ! is the eigendecomposition of W.

@ After t multiplication steps, we are multiplying by W* and LI
the eigendecomposition becomes W* = Vdiag(\)!V~! Q/ "

@ The Vanishing and Exploding gradient descent problem arises
from scaling diag(\)*.

@ The Power Method can be deployed to detect the largest
eigenvalue \; of W and its eigenvector and then to rule out
all components that are orthogonal to W.

Figure: Computational Graph
[source]

Penelope Mueck, Siba Mohsen (University of Bonn) 08.12.2020 20/39

https://blog.paperspace.com/pytorch-101-understanding-graphs-and-automatic-differentiation/

Poor Correspondence between Local and Global Structure

@ Previous mitigation techniques solve the optimization problem at a single point on the
loss function to arrive to a low cost value
@ Challenge: Is this cost value sufficiently low w.r.t. other low values? Does this low value
drives the point into a much lower cost value (e.g. global minimum)?
e Mitigation Techniques:
» Force the gradient to start at good points on the loss function to get faster into a convenient

minimum
» Do not concentrate on finding the exact minimum of the loss function, rather try to achieve
a low cost value that would generalize well

Penelope Mueck, Siba Mohsen (University of Bonn) 08.12.2020 21/39

Basic Algorithms

Penelope Mueck, Siba Mohsen (University of Bonn) 08.12.2020 22/39

SGD-Algorithm

Algorithm 1: Stochastic Gradient Descent (SGD) update
Require: Learning rate schedule €76, ...
Require: Initial Parameter 6
Set k =0;
while stopping criterion is not met do
Pick a minibatch of m examples from the training set {(x(l),y(l)) ey (x(m),y(m))};
Compute gradient estimate: § = 2V, >~ L (f(x(1;6),y1) ;
Apply update 0 = 0 — ¢,& ;
k=k+1;
end

Penelope Mueck, Siba Mohsen (University of Bonn) 08.12.2020 23/39

SGD-Learning Rate ¢

@ Tells how much to change the model based on the loss function
@ Decreases over time
@ To choose by trial and error or by depicting the learning curve over time

@ In practice: for a = é decrease €, linearly until iteration 7:

€k = (1 — 04)60 + aer

» 7 = number of iterations to make few hundred passes through NN
> €y > best performing €, in the first iterations

Penelope Mueck, Siba Mohsen (University of Bonn) 08.12.2020 24 /39

SGD-Convergence and Computation

Allows convergence even with huge number of training examples

To calculate excess error for convergence: J(6) — ming J(0)

SGD applied to a convex problem: excess error = O(\/LE) after k iterations

SGD applied to a strongly convex problem: excess error = O(%) after k iterations

Penelope Mueck, Siba Mohsen (University of Bonn) 08.12.2020 25/39

Momentum-Characteristics

A fissured surface
b Ew)

@ Momentum in physics: mass x
velocity

steep valley

@ Momentum is faster than SGD

flat plateau

@ Momentum fixes variance
problem in SGD caused by
computing inexact derivates of
the loss function

suboptimal local minimum @ Momentum is robust to high
Wiz curvature and small/noisy
gradients

isolated point

global minimum

Figure: Loss function during training of a neural network
[Goel9].

Penelope Mueck, Siba Mohsen (University of Bonn) 08.12.2020 26 /39

Momentum-Algorithm

Algorithm 2: Stochastic Gradient Descent (SGD) with momentum
Require: Learning rate ¢, momentum parameter «
Require: Initial Parameter 6, initial velocity v
while stopping criterion is not met do
Pick a minibatch of m examples from the training set {(x(l),y(l)) e (x(’"),y(m))};
Compute gradient estimate: g = #V@ >l (f(x(i); 9),y(i)) ;
Compute velocity update: v =av —eg ;
Apply update: 6 =6 + v ;
end

Penelope Mueck, Siba Mohsen (University of Bonn) 08.12.2020 27/39

Momentum-Parameters

@ Momentum algorithm accumulates a quickly decreasing average of past gradients and
uses them in the next move

Velocity v (momentum): direction and speed of parameters

Momentum parameter « € [0,1): determines how quickly the contributions of previous
gradients exponentially decrease and affect current move

In practice: o € 0.5,0.9,0.99, increases over time

0(t): Point on the loss function at time t

Penelope Mueck, Siba Mohsen (University of Bonn) 08.12.2020 28/39

Nesterov Momentum

@ Adds correction factor to Momentum

o Gradient step is evaluated after

application of momentum (velocity step)

@ New update rule:

1

g:—xVQXZL(f(X('
=av —eg

0=0+v

Momentum update

momentum
step
actual step

gradient
step

Figure: Momentum vs.

update step [source|.

Penelope Mueck, Siba Mohsen (University of Bonn

)

Nesterov momentum update

“lookahead" gradient

step (bit different than
momentum original)
step
actual step

Nesterov Momentum

08.12.2020

29 /39

https://cs231n.github.io/neural-networks-3/

Parameter Initialization Strategies

Penelope Mueck, Siba Mohsen (University of Bonn) 08.12.2020 30/39

Initialization for Deep Learning

@ Training algorithms for deep learning are usually iterative — user has to specify an initial
point
@ Initial point affects

> convergence

» speed of convergence

» if we converge to a point with high or low cost — points of comparable cost can have a
different generalization error!

Penelope Mueck, Siba Mohsen (University of Bonn) 08.12.2020 31/39

Characteristics of Initial Parameters

@ Most initialization strategies are based on achieving good properties when the network is
initialized
» No good understanding of how these properties are preserved during training
» Optimization vs. regularization
@ Certainly known: Initial parameters need to break symmetry between different units
» Hidden units with same activation function and connection to same input parameters must
have different initial parameters

— Use random initialization

Penelope Mueck, Siba Mohsen (University of Bonn) 08.12.2020 32/39

Random Initialization

@ Weights are initialized randomly
@ Values are drawn randomly from a Gaussian or uniform distribution

@ Scale of initial distribution has a large effect on the outcome — influences optimization
and generalization

>

>

Penelope Mueck, Siba Mohsen (University of Bonn)

Larger weights lead to stronger symmetry-breaking effect

Too large weights can cause exploding values during forward or backward-propagation or
saturation of the activation function

Optimization perspective: weights should be large enough to propagate information

successfully
Regularization: Keep weights small

08.12.2020 33/39

Heuristics for Choosing Initial Scale of the Weights

1. Initialize weights by sampling each weight from U (—ﬁ, ﬁ)

» We assume we have a fully connected layer with m inputs and n outputs

2. Use normalized initialization: W;; ~ U (—1 / min, 1/ miﬂ)

3. Initialize to random orthogonal matrices with gain factor g that needs to be carefully
chosen

4. Use sparse initialization: each unit is initialized to have exactly k nonzero weights

@ Optimal criteria for initial weights do not lead to optimal performance

» Treat initial weights as hyperparameters
» Treat initial scale of the weights and whether to use sparse or dense initialization as

hyperparameter if not too costly

Penelope Mueck, Siba Mohsen (University of Bonn) 08.12.2020 34/39

Initializing the Biases

@ Approach for setting the biases must be coordinated with the approach for setting the
weights

@ Setting the biases to zero is compatible with most weight initialization schemes

@ Cases where biases may be set to nonzero values:

» If a bias is for an output unit — beneficial to initialize the bias to obtain the right marginal

statistics of the output
» When we want to avoid too much saturation at initialization
» When a unit controls whether other units are able to participate in a function

Penelope Mueck, Siba Mohsen (University of Bonn) 08.12.2020 35/39

Questions

=] F = £ Haw
Penelope Mueck, Siba Mohsen (University of Bonn)

White Board

=] F = = DAy
Penelope Mueck, Siba Mohsen (University of Bonn)

White Board

=] F = = DAy
Penelope Mueck, Siba Mohsen (University of Bonn)

References

Yann N Dauphin et al. “Identifying and attacking the saddle point problem in
high-dimensional non-convex optimization”. In: Advances in neural information
processing systems. 2014, pp. 2933-2941.

Shaumik Daityari. “A Beginners Guide to Keras". In: (2016). URL:
%5Curl’,7Bhttps://www.sitepoint.com/keras-digit-recognition-
tutorial/%7D.

lan Goodfellow, Yoshua Bengio, and Aaron Courville. Deep Learning.
http://wuw.deeplearningbook.org. MIT Press, 2016.

Emilia Lopez-Inesta. In: (2016). URL: %5Curl}7Bhttps:
//www.researchgate.net/profile/Emilia_Lopez-Inestaj7D.

Reza. “The Hard Thing in Deep Learning”. In: (2016). URL:
%5CurlY,7Bhttps://www.matroid.com/blog/post/the-hard-thing-about-
deep-learning7D.

Dr. Nils Goerke. “TNN S19¢931rainingp LPs,, g Pslides.pdf” . In: (2019). URL:
https://www.ais.uni-bonn.de/WS1920/4204_L_NN.html:= » « =

Penelope Mueck, Siba Mohsen (University of Bonn)

%5Curl%7Bhttps://www.sitepoint.com/keras-digit-recognition-tutorial/%7D
%5Curl%7Bhttps://www.sitepoint.com/keras-digit-recognition-tutorial/%7D
http://www.deeplearningbook.org
%5Curl%7Bhttps://www.researchgate.net/profile/Emilia_Lopez-Inesta%7D
%5Curl%7Bhttps://www.researchgate.net/profile/Emilia_Lopez-Inesta%7D
%5Curl%7Bhttps://www.matroid.com/blog/post/the-hard-thing-about-deep-learning%7D
%5Curl%7Bhttps://www.matroid.com/blog/post/the-hard-thing-about-deep-learning%7D
https://www.ais.uni-bonn.de/WS1920/4204_L_NN.html
%5Curl%7Bhttps://www.researchgate.net/figure/Illustrations-of-the-0-1-loss-function-and-three-surrogate-loss-functions-hinge-loss_fig1_220485537%7D
%5Curl%7Bhttps://www.researchgate.net/figure/Illustrations-of-the-0-1-loss-function-and-three-surrogate-loss-functions-hinge-loss_fig1_220485537%7D
%5Curl%7Bhttps://www.researchgate.net/figure/Illustrations-of-the-0-1-loss-function-and-three-surrogate-loss-functions-hinge-loss_fig1_220485537%7D

	How Learning Differs from Pure Optimization
	Challenges in Neural Optimization
	Basic Algorithms
	Parameter Initialization Strategies
	References

