Training Optimization I Based on "Deep Learning"

Penelope Mueck, Siba Mohsen

University of Bonn

08.12.2020

Penelope Mueck, Siba Mohsen (University of Bonn) [Training Optimization I](#page-38-0) 08.12.2020 1/39

 299

4 0 8 \leftarrow \leftarrow

 \rightarrow 4 \equiv \rightarrow 4

Motivation

Penelope Mueck, Siba Mohsen (University of Bonn) [Training Optimization I](#page-0-0) 08.12.2020 2/39

重

イロト イ部 トイヨ トイヨト

Outline

- 1. [How Learning Differs from Pure Optimization](#page-3-0)
- 2. [Challenges in Neural Optimization](#page-10-0)
- 3. [Basic Algorithms](#page-21-0)
- 4. [Parameter Initialization Strategies](#page-29-0)

 299

 \leftarrow

How Learning Differs from Pure **Optimization**

Penelope Mueck, Siba Mohsen (University of Bonn) [Training Optimization I](#page-0-0) 08.12.2020 4/39

Training Deep Learning Models

- Optimize performance measure P defined w.r.t. test set
- P can only be optimized indirectly \rightarrow minimize the risk

$$
J^*(\theta) = E_{(x,y)\sim \rho_{data}}[L(f(x;\theta), y)]
$$

- ρ_{data} : data generating distribution
- \blacktriangleright L: per-example loss function
- \blacktriangleright $f(x; \theta)$: predicted output when input is x
- \blacktriangleright y: target output
- p_{data} is unknown \rightarrow minimize empirical risk

$$
E_{(x,y)\sim \hat{\rho}_{data}}[L(f(x;\theta),y)]=\frac{1}{m}\sum_{i=1}^m L(f(x;\theta),y)
$$

- **Empirical risk minimization** rarely used in deep learning
	- \blacktriangleright Loss functions do not have useful derivatives
	- \triangleright Overfitting

Penelope Mueck, Siba Mohsen (University of Bonn) [Training Optimization I](#page-0-0) 08.12.2020 5/39

Surrogate Loss Functions and Early Stopping

- **Instead of the loss function we often** minimize a surrogate loss function
- Minimizing the surrogate loss function halts when early stopping criterion is met
	- \triangleright Training often halts when surrogate loss function still has large derivatives
- **Early stopping** criterion is based on true underlying loss function measured on the validation set

Figure: Surrogate loss functions for 0-1 loss [\[Ngu20\]](#page-38-4).

Form of the Objective Function

- Objective function decomposes as a sum over training examples
- We compute each update to the parameters based on an expected value of the cost function
- Example: Maximum likelihood estimation

$$
J(\theta) = E_{(x,y)\sim \hat{\rho}_{data}} \log p_{model}(x, y; \theta)
$$

$$
\nabla_{\theta} J(\theta) = E_{(x,y)\sim \hat{\rho}_{data}} \nabla_{\theta} \log p_{model}(x, y; \theta)
$$

Batch, online and Stochastic Methods

- Batch methods: Optimization algorithms that use the entire training set
- **Online methods**: Optimization algorithms that use only a single example at a time
- Minibatch/Stochastic methods: Batch size between size for batch and online methods \rightarrow used in deep learning

Stochastic Methods - How to Pick the Minibatches

• How to pick the minibatches:

- \triangleright Minibatches have to be selected randomly
- \triangleright Subsequent minibatches should be independent of each other
- \triangleright Shuffle examples if ordering is significant
- \triangleright Special case very large datasets: minibatches are constructed from shuffled examples rather than selected randomly
- Factors influencing the size:
	- \blacktriangleright Accuracy of estimate
	- \triangleright Regularization vs. optimization
	- \blacktriangleright Hardware and memory
	- \blacktriangleright Multicore architectures are underutilized by very small batches \rightarrow define minimum batch size

Stochastic Gradient Descent Minimizes Generalization Error

Assumptions:

- Examples are drawn from stream of data
- x and y are discrete \Rightarrow

$$
J^*(\theta) = \sum_{x} \sum_{y} p_{data}(x, y) L(f(x; \theta), y)
$$

$$
\nabla_{\theta} J^*(\theta) = \sum_{x} \sum_{y} p_{data}(x, y) \nabla_{\theta} L(f(x; \theta))
$$

 $\Rightarrow \hat{g}=\frac{1}{m}\nabla_\theta\sum_iL(f(\mathsf{x}^{(i)};\theta),\mathsf{y}^{(i)})$ is an unbiased estimate of $\nabla_\theta J^*(\theta)$ if we sample a minibatch of examples $\{ \mathsf{x}^{(1)},..,\mathsf{x}^{(m)} \}$ with corresponding targets $\mathsf{y}^{(i)}$ sampled from ρ_{data}

Challenges in Neural Optimization

Penelope Mueck, Siba Mohsen (University of Bonn) [Training Optimization I](#page-0-0) 08.12.2020 11/39

 290

 $\mathcal{A} \oplus \mathcal{B}$ and $\mathcal{A} \oplus \mathcal{B}$ and \mathcal{B}

4 0 F

Challenges Facing Optimization of Deep Neural Networks

- **•** Ill-Conditioning
- **a** Local Minima
- Plateaus, Saddle points and other Flat regions
- Cliffs
- **Long-Term Dependencies**
- **Poor Correspondence between Local and** Global Structure

Figure: Loss function during training a neural network [\[Goe19\]](#page-38-5).

Definitions (Recap)

- Given vector-valued function $f: \mathbb{R}^n \to \mathbb{R}^m$
- If f consists of m functions $f_1, \ldots, f_m : \mathbb{R}^n \to \mathbb{R}^n$
- ▶ Jacobian Matrix: $J \in \mathbb{R}^{m \times n}$, $(J)_{i,j} = \frac{\partial f_i}{\partial x}$ ∂x^j

$$
J = \left[\begin{array}{ccc} | & & | \\ \nabla_x f_1 & \ldots & \nabla_x f_m \\ | & & | \end{array} \right]
$$

 $\rightarrow 1^\text{st}$ -Order Optimization

▶ Hessian Matrix: $H \in \mathbb{R}^{n \times n}$, $H(f)(x)_{i,j} := \frac{\partial}{\partial x_i \partial x_j} f(x)$ \rightarrow 2nd-Order Optimization

Conditioning

Figure: Gradient descent directions during training [\[source\].](https://www.quora.com/What-does-it-mean-to-have-a-poorly-conditioned-Hessian-matrix)

- 1. Neural Networks are trained by changing parameters based on an optimization algorithm (e.g. Stochastic Gradient Descent)
- 2. Optimization algorithm searches for local/global minima on loss function
- 3. Hessian matrix hints at curvature of functions (convex)
- 4. Condition number of the Hessian measures the difference between derivatives in each direction

Ill-Conditioning

Figure: Gradient descent directions during training with ill-conditioned Hessian [\[source\].](https://www.quora.com/What-does-it-mean-to-have-a-poorly-conditioned-Hessian-matrix)

- **Challenges:** Poor conditioning imerges when the condition number is high:
	- \triangleright gradient descent will perform poorly: which direction will the gradient choose?
	- \triangleright choice of suitable step size becomes difficult: smaller steps to adapt to strong curvature \rightarrow slow learning

• Mitigation Techniques:

- \triangleright Modification of Newton's method then applying it to the Neural Network
- \blacktriangleright Momentum Algorithm

Local Minima

- \bullet Neural networks have nonconvex cost functions \rightarrow several local minima
- Neural Networks are nonidentifiable, because there are many possibilities to select suitable weights during training
	- \blacktriangleright Infinite number of local minima
	- \triangleright Equivalent to each other in cost value
	- \triangleright Not problematic
- **Challenge:** Local minima have higher cost function value than global minimum

• Mitigation Techniques:

- \triangleright Most local minima present low cost function value
- It is sufficient to find a convenient local minimum instead of the global minimum

Plateaus, Saddle Points and other Flat Regions

Saddle points:

- Most frequent in high dimensional nonconvex functions
- Can be local minimum and maximum of cost function depending on point of view
- \bullet How do 1st and 2nd order optimizations deal with saddle points?
	- \blacktriangleright 1st order: The gradient becomes very small or escapes the point
	- \blacktriangleright 2nd order: **Challenges:**
		- 1. The gradient may go directly and sit on the saddle point $(\nabla_x f(x) = 0)$
		- 2. Hard to be used in huge NN

Mitigation Technique: Saddle-free Newton method by rapidly escaping high dimensional saddle points $[Dau+14]$

Plateaus and Flat Regions:

Cause problems when optimizing nonconvex functions with no remediation techniques

 Ω

Cliffs

- Dangerous from both sides: above and below
- Challenge: The gradient surpasses the cliff structure because it only determines which direction to choose and disregards step size
- **Mitigation Technique:** Gradient Clipping Heuristic (chapter 10) by reducing the step size to prohibit the gradient to surpass the cliff Figure: Cliff region [\[GBC16\]](#page-38-7).

Long-Term Dependencies

- Very deep computational graphs caused by big number of layers in NN (e.g recurrent networks)
- **Challenges:** Vanishing and Exploding gradient descent
	- \triangleright Vanishing GD: gradients don't know which direction to choose to improve the cost function
	- Exploding GD: makes the learning process inconsistent
- Mitigation Technique: Power method for recurrent and feedforward neural networks to discard uninteresting features in input vector

Figure: Computational Graph [\[source\]](https://blog.paperspace.com/pytorch-101-understanding-graphs-and-automatic-differentiation/)

Example: Long-Term Dependencies

- Suppose that a path of the computational graph applies a repeated multiplication with a matrix W, where $\mathsf{W}=\mathsf{V}$ diag $(\lambda)\mathsf{V}^{-1}$ is the eigendecomposition of $\mathsf{W}.$
- After t multiplication steps, we are multiplying by \mathbf{W}^t and the eigendecomposition becomes $\mathbf{W}^t = \mathbf{V} \textit{diag}(\lambda)^t \mathbf{V}^{-1}$
- The Vanishing and Exploding gradient descent problem arises from scaling $diag(\lambda)^t$.
- The Power Method can be deployed to detect the largest eigenvalue λ_i of **W** and its eigenvector and then to rule out all components that are orthogonal to W .

Figure: Computational Graph [\[source\]](https://blog.paperspace.com/pytorch-101-understanding-graphs-and-automatic-differentiation/)

Poor Correspondence between Local and Global Structure

- Previous mitigation techniques solve the optimization problem at a single point on the loss function to arrive to a low cost value
- Challenge: Is this cost value sufficiently low w.r.t. other low values? Does this low value drives the point into a much lower cost value (e.g. global minimum)?
- Mitigation Techniques:
	- \triangleright Force the gradient to start at good points on the loss function to get faster into a convenient minimum
	- \triangleright Do not concentrate on finding the exact minimum of the loss function, rather try to achieve a low cost value that would generalize well

Basic Algorithms

Penelope Mueck, Siba Mohsen (University of Bonn) [Training Optimization I](#page-0-0) 08.12.2020 22/39

II

э

 299

K ロ ▶ K 御 ▶ K 君 ▶ K 君

SGD-Algorithm

Algorithm 1: Stochastic Gradient Descent (SGD) update

```
Require: Learning rate schedule \epsilon_1, \epsilon_2, \ldots
```
Require: Initial Parameter θ

Set $k = 0$;

while stopping criterion is not met do

Pick a minibatch of m examples from the training set $\{(x^{(1)}, y^{(1)}), \ldots, (x^{(m)}, y^{(m)})\};$ Compute gradient estimate: $\hat{g} = \frac{1}{m} \nabla_{\theta} \sum_{i} L(f(x^{(i)}; \theta), y^{(i)})$; Apply update $\theta = \theta - \epsilon_k \hat{g}$; $k = k + 1$; end

SGD-Learning Rate ϵ_k

- Tells how much to change the model based on the loss function
- Decreases over time
- To choose by trial and error or by depicting the learning curve over time
- In practice: for $\alpha = \frac{k}{\tau}$ $\frac{k}{\tau}$, decrease $\epsilon_{\bm{k}}$ linearly until iteration τ :

$$
\epsilon_k = (1 - \alpha)\epsilon_0 + \alpha \epsilon_\tau
$$

- \triangleright τ = number of iterations to make few hundred passes through NN
- $\epsilon_{\tau} = \frac{\epsilon_0}{100}$
- ϵ_0 > best performing ϵ_k in the first iterations

SGD-Convergence and Computation

- Allows convergence even with huge number of training examples
- To calculate excess error for convergence: $J(\theta)$ min $_{\theta}$ J(θ)
- SGD applied to a convex problem: excess error $= {\cal O}(\frac{1}{\sqrt{2}})$ $(\frac{1}{\overline{k}})$ after k iterations
- SGD applied to a strongly convex problem: excess error $=\mathcal{O}(\frac{1}{k})$ $\frac{1}{k}$) after k iterations

Momentum-Characteristics

Figure: Loss function during training of a neural network [\[Goe19\]](#page-38-5).

- Momentum in physics: mass \times velocity
- **Momentum is faster than SGD**
- **Momentum fixes variance** problem in SGD caused by computing inexact derivates of the loss function
- Momentum is robust to high curvature and small/noisy gradients

Algorithm 2: Stochastic Gradient Descent (SGD) with momentum

Require: Learning rate ϵ , momentum parameter α

Require: Initial Parameter θ , initial velocity v

while stopping criterion is not met do

Pick a minibatch of m examples from the training set $\{(x^{(1)}, y^{(1)}), \ldots, (x^{(m)}, y^{(m)})\};$ Compute gradient estimate: $g = \frac{1}{m} \nabla_{\theta} \sum_{i} L(f(x^{(i)}; \theta), y^{(i)})$; Compute velocity update: $v = \alpha v - \epsilon g$; Apply update: $\theta = \theta + v$;

end

- Momentum algorithm accumulates a quickly decreasing average of past gradients and uses them in the next move
- Velocity *v* (momentum): direction and speed of parameters
- Momentum parameter $\alpha \in [0,1)$: determines how quickly the contributions of previous gradients exponentially decrease and affect current move
- In practice: $\alpha \in 0.5, 0.9, 0.99$, increases over time
- $\theta(t)$: Point on the loss function at time t

Nesterov Momentum

- Adds *correction factor* to Momentum
- Gradient step is evaluated after application of momentum (velocity step)

• New update rule:

$$
g = \frac{1}{m} \times \nabla_{\theta} \times \sum_{i} L\left(f(x^{(i)}; \theta + \alpha v), y^{(i)}\right)
$$

$$
v = \alpha v - \epsilon g
$$

$$
\theta = \theta + v
$$

Figure: Momentum vs. Nesterov Momentum update step [\[source\].](https://cs231n.github.io/neural-networks-3/)

←□

Parameter Initialization Strategies

Penelope Mueck, Siba Mohsen (University of Bonn) [Training Optimization I](#page-0-0) 08.12.2020 30/39

 290

 $\mathcal{A} \oplus \mathcal{B}$ $\mathcal{B} \rightarrow \mathcal{A} \oplus \mathcal{B}$

4 **EL F**

Initialization for Deep Learning

- \bullet Training algorithms for deep learning are usually iterative \rightarrow user has to specify an initial point
- Initial point affects
	- \blacktriangleright convergence
	- \blacktriangleright speed of convergence
	- In if we converge to a point with high or low cost \rightarrow points of comparable cost can have a different generalization error!

Characteristics of Initial Parameters

- Most initialization strategies are based on achieving good properties when the network is initialized
	- \triangleright No good understanding of how these properties are preserved during training
	- \triangleright Optimization vs. regularization
- Certainly known: Initial parameters need to **break symmetry** between different units
	- \blacktriangleright Hidden units with same activation function and connection to same input parameters must have different initial parameters
	- \rightarrow Use random initialization

Random Initialization

- Weights are initialized randomly
- Values are drawn randomly from a Gaussian or uniform distribution
- \bullet Scale of initial distribution has a large effect on the outcome \rightarrow influences optimization and generalization
	- \blacktriangleright Larger weights lead to stronger symmetry-breaking effect
	- \triangleright Too large weights can cause exploding values during forward or backward-propagation or saturation of the activation function
	- \triangleright Optimization perspective: weights should be large enough to propagate information successfully
	- \triangleright Regularization: Keep weights small

Heuristics for Choosing Initial Scale of the Weights

- 1. Initialize weights by sampling each weight from $U\left(-\frac{1}{\sqrt{2}}\right)$ $\frac{1}{m}, \frac{1}{\sqrt{n}}$ m \setminus
	- \triangleright We assume we have a fully connected layer with m inputs and n outputs
- 2. Use normalized initialization: $\mathcal{W}_{i,j} \sim U\left(-\sqrt{\frac{6}{m+n}}, \sqrt{\frac{6}{m+n}}\right)$
- 3. Initialize to random orthogonal matrices with gain factor g that needs to be carefully chosen
- 4. Use sparse initialization: each unit is initialized to have exactly k nonzero weights
- Optimal criteria for initial weights do not lead to optimal performance
	- \triangleright Treat initial weights as hyperparameters
	- \triangleright Treat initial scale of the weights and whether to use sparse or dense initialization as hyperparameter if not too costly
- Approach for setting the biases must be coordinated with the approach for setting the weights
- Setting the biases to zero is compatible with most weight initialization schemes
- Cases where biases may be set to nonzero values:
	- If a bias is for an output unit \rightarrow beneficial to initialize the bias to obtain the right marginal statistics of the output
	- \triangleright When we want to avoid too much saturation at initialization
	- \triangleright When a unit controls whether other units are able to participate in a function

Questions

重

 299

イロト 不倒 トメ 差 トメ 差

White Board

重

メロメメ 倒 メメ ミメメ ミメ

White Board

重

メロメメ 倒 メメ ミメメ ミメ

References

F

F

F

F

F

F

- Yann N Dauphin et al. "Identifying and attacking the saddle point problem in high-dimensional non-convex optimization". In: Advances in neural information processing systems. 2014, pp. 2933–2941.
	- Shaumik Daityari. "A Beginners Guide to Keras". In: (2016). URL: [%5Curl%7Bhttps://www.sitepoint.com/keras-digit-recognition](%5Curl%7Bhttps://www.sitepoint.com/keras-digit-recognition-tutorial/%7D)[tutorial/%7D](%5Curl%7Bhttps://www.sitepoint.com/keras-digit-recognition-tutorial/%7D).
	- Ian Goodfellow, Yoshua Bengio, and Aaron Courville. Deep Learning. <http://www.deeplearningbook.org>. MIT Press, 2016.
	- Emilia Lopez-Inesta. In: (2016). URL: [%5Curl%7Bhttps:](%5Curl%7Bhttps://www.researchgate.net/profile/Emilia_Lopez-Inesta%7D) [//www.researchgate.net/profile/Emilia_Lopez-Inesta%7D](%5Curl%7Bhttps://www.researchgate.net/profile/Emilia_Lopez-Inesta%7D).
	- Reza. "The Hard Thing in Deep Learning". In: (2016). URL: [%5Curl%7Bhttps://www.matroid.com/blog/post/the-hard-thing-about](%5Curl%7Bhttps://www.matroid.com/blog/post/the-hard-thing-about-deep-learning%7D)[deep-learning%7D](%5Curl%7Bhttps://www.matroid.com/blog/post/the-hard-thing-about-deep-learning%7D).
- Dr. Nils Goerke. "TNNwS19037 raining MLPswBP_slides.pdf". In: (2019). URL: $\begin{array}{rcl} \texttt{https://www.ais.uni-bonn.de/WS1920/4204_L_NN.htm1.6} \ \texttt{https://www.ais.uni-bonn.de/WS1920/4204_L_NN.htm1.6} \ \texttt{https://www.ais.uni-bonn.caining Optimization1} \ \texttt{Many.68.12.2020} \ \texttt{39/39} \end{array}$ $\begin{array}{rcl} \texttt{https://www.ais.uni-bonn.de/WS1920/4204_L_NN.htm1.6} \ \texttt{https://www.ais.uni-bonn.de/WS1920/4204_L_NN.htm1.6} \ \texttt{https://www.ais.uni-bonn.caining Optimization1} \ \texttt{Many.68.12.2020} \ \texttt{39/39} \end{array}$ $\begin{array}{rcl} \texttt{https://www.ais.uni-bonn.de/WS1920/4204_L_NN.htm1.6} \ \texttt{https://www.ais.uni-bonn.de/WS1920/4204_L_NN.htm1.6} \ \texttt{https://www.ais.uni-bonn.caining Optimization1} \ \texttt{Many.68.12.2020} \ \texttt{39/39} \end{array}$ Penelope Mueck, Siba Mohsen (University of Bonn) [Training Optimization I](#page-0-0) 08.12.2020 39/39

 X uan \mathcal{L} (see Functional Models Using Sparse Tensors and Functional Fun