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Motivation

■ Basic methods have a fixed learning rate.

■ Challenges of using learning rate scheduler

– Dependency of type of model and problem.

– Same learning rate is applied on different parameters.

■ Solution: Adaptive learning rate.

■ Adaptive learning rate is a method by which the performance of the model on the training dataset 
can be monitored by the learning algorithm and the learning rate can be adjusted in response.
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AdaGrad

■ The AdaGrad (Adaptive Gradient) algorithm, individually adapts the learning rates of all 
model parameters by scaling them inversely proportional to the square-root of the sum of all of 
their historical squared values.

■ Adagrad uses a different learning rate for every parameter θi at every time step t.

■ It has an improved performance over SGD.

■ Mostly used in natural language processing and image recognition.
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AdaGrad Algorithm
Require: Global learning rate 

Require: Initial parameter 
Require: small constant .(suggested value: 10-7)

   Initialize gradient accumulation variable r = 0

   while stopping criterion not met do

Sample a mini-batch of m examples from the training set {x(1), x(2), …, x(m)} with 
corresponding targets y(i).

Compute gradient:  

Accumulate squared gradient: 

Compute update:

Apply update 

   end while
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RMS Prop

■ Problem with AdaGrad is its nature of radically diminishing learning rates and hence RMS Prop 
algorithm.

■ RMSProp would deal with this problem and it is similar to gradient descent with momentum. 

■ RMSprop as well divides the learning rate by an exponentially decaying average of squared 
gradients.

■ Usual values for  is 0.9 or 0.95.

■ RMSProp converges faster than AdaGrad to the convex bowl.

■ It is useful when dealing with sparse data or noisy data.
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RMSProp Algorithm

Require: Global learning rate , decay rate 

Require: Initial parameter 
Require: small constant .

   Initialize gradient accumulation variable r = 0

   while stopping criterion not met do

Sample a mini-batch of m examples from the training set {x(1), x(2), …, x(m)} with corresponding 
targets y(i).

Compute gradient:  

Accumulate squared gradient: 

Compute update:

Apply update 

   end while
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Adam

■ The name is derived from the phrase “Adaptive moments”.

■ It estimates the first moment and the second moment of the gradients and hence the 
name of the method.

■ It is a combines the advantages of AdaGrad and RMSProp.

– Inspired from AdaGrad, it maintains the per-parameter learning rate that improves 
performance of problems with sparse gradients.

– Inspired from RMSProp, it stores the exponential decay of average of the past 
squared gradients.
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Adam Algorithm
Require: step size  (suggested default: 0.001)

Require: Exponential decay rates for moment estimates, ρ1 and ρ2 in [0, 1).(Suggested defaults: 0.9 and 0.999 respectively)

Require: Small constant  used for numerical stabilization. (Suggested default: 10-8)

Require: Initial parameters .

   Initialize 1st and 2nd moment variables s = 0, r = 0

   Initialize time step t = 0 

   while stopping criterion not met do

Sample a mini-batch of m examples from the training set {x(1), x(2), …, x(m)} with corresponding targets y(i).

Compute gradient:  

Update biased first moment estimate: 

Update biased second moment estimate: 

Correct bias in first moment: 

Correct bias in second moment: 

Compute update:

Apply update: 
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Choosing the right optimization 
algorithm
■ It is highly problem dependent.

■ If the input data is highly sparse than adaptive learning rates are recommended.

■ Adaptive models are used when training a deep or complex neural network or when 
faster convergence is expected.

■ Adam is the mostly used optimizer.
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Example
gradient descent (cyan), momentum (magenta), AdaGrad (white), RMSProp (green), Adam (blue).
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Second-Order methods
■ It provides an addition curvature information of an objective function that adaptively 

estimate the step-length of optimization trajectory in training phase of neural network.

■ This involves computing or approximating the matrix of second-order derivatives, i.e. 
the Hessian, in the context of exact deterministic optimization.

■ While second-order methods often have significantly better convergence properties than 
first-order methods, the size of typical problems prohibits their use in practice, as they 
require quadratic storage and cubic computation time for each gradient update.

■ In all the methods here empirical risk is assumed to be 
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Newton’s Method

■ It is a widely used second-order gradient method.

■ It is a optimization method based on second order Taylor series expansion of J() at some point 0 

after ignoring the higher orders.
■  

■ This method added computational burden of calculation of inverse of the matrix and also not 
recommended for a function with saddle points.

■ For non-quadratic surfaces, as long as H remains PD, Newton’s method can be applied.

■ Newton’s method would require the inversion of a k × k matrix—with computational 
complexity of O(k3).
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Newton’s method Algorithm

Require: Initial parameter 

Require: Training set of m examples

  while stopping criterion not met do

Compute gradient: 

Compute Hessian: 

Compute Hessian inverse: H-1

Compute update: g

Apply update 

   end while
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Conjugate gradients

■ Conjugate gradients is a method to efficiently avoid the calculation of the inverse 
Hessian by iteratively descending conjugate directions.

■ Motivation of this approach is line searches applied iteratively in the direction 
associated with the gradient.

■ At each step, next step is made in the direction using

■ Two directions are conjugate if 

■ Two methods of calculation  are:
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Conjugate gradient method

Require: Initial parameters 0 

Require: Training set of m examples

   Initialize 

   Initialize g0 = 0

   Initialize t = 1

   while stopping criterion not met do 

Initialize the gradient gt = 0

Compute gradient: 

Compute 

Compute search direction: 

Perform line search to find: 

Apply update: 

    end while
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Batch Normalization – Motivation

x w1 w2 wk ŷ...

ŷ = xw1w2 · · ·wk (all ∈ R)
gradient of w1 derived under the assumption that w2, . . . ,wk

fixed
BUT: update rule w ← w − εg
expected: ŷ decreases by εgTg (first-order Taylor
approximation)
actually: various higher-order effects, e.g. ε2g1g2

∏k
i=3 wi
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Batch Normalization

problem: unwanted side-effects when applying gradient-descent to
networks with many layers

solutions
correction via higher-order methods
very small learning rate
batch normalization

batch normalization:
normalize activation values after each linear transformation
applicable to all layers except for the output layer
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Batch Normalization

batch normalization
Input: m examples e(i) ∈ Rn (n nodes in layer)

1 calculate n means µj =
1
m

∑m
i=1 e

(i)
j

2 calculate n standard deviations σj =
√
δ + 1

m

∑m
i=1(e

(i)
j − µj)2

with a small positive δ (e.g. 10−8)

3 replace e(i) by e ′(i) = (
e
(i)
1 −µ1
σ1

,
e
(i)
2 −µ2
σ2

, . . . , e
(i)
n −µn

σn
)T

training: back-propagate through this normalization operation
⇒gradient will never propose changing mean or standard deviation
test: use averages over µ, σ collected during training
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Batch Normalization – Example

x w1 w2 wk ŷ...

ŷ = xw1w2 · · ·wk

x ∼ N (0, 1)
linear transformation: xw1 ∼ N (0, σ2)

σ removed by batch normalization ⇒ xw1 ∼ N (0, 1)
⇒ only wk has an (linear) effect on the output value ŷ
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Batch Normalization

batch normalization removes linear effects of hidden layers, but
preserves non-linear effects.

advantages [2]
learning becomes more stable
higher learning rates possible
models less sensitive to initialization values
regularization effect, similar to Dropout in some cases

⇒ faster and better training results

8 / 26



Outline

1 Batch Normalization

2 Supervised Pretraining

3 Designing Models to Aid Optimization

4 Continuation Methods and Curriculum Learning

5 Coordinate Descent and Polyak Averaging

9 / 26



Supervised Pretraining

sometimes training a model directly for a task is not possible

problems
hard to optimize model (e.g. very deep networks)
difficult task

goal: additional guidance for parameters in deep networks
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Supervised Pretraining

greedy supervised pretraining
multiple trainings before actual
training
each trains only a subset of layers
assumption: pre-trained weights
provide guidance for hidden layer
parameters

adapted from [1, p. 324]
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Supervised Pretraining

teacher student learning
shallow and wide network (teacher) aids training of deep and
thin network (student)
secondary objective: predict middle-layer values of teacher
network
⇒ guidance on how to use the hidden layers
example: student outperforms teacher on CIFAR-10 with 90%
less parameters [5]
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Supervised Pretraining

transfer learning
train network on one task
use weights to initialize training on a similar task
assumption: networks learn some general abstraction that is
useful for many tasks
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Designing Models to Aid Optimization

an easy to optimize model family is more important than a powerful
optimization algorithm. [1, p. 326]

goal: local gradient information useful for reaching distant solution
⇒as much (near-)linearity as possible, e.g. ReLu instead of sigmoids
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Designing Models to Aid Optimization

challenge: ensure useful gradient information on low layers in deep
networks

skip connections [6]
“highways” passing unchanged activation over several layers

auxiliary heads [7, 3]
additional nodes at hidden layers
trained to perform like output nodes, discarded after training
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Continuation Methods

generate series of cost
functions
J (0), J (1), . . . , J (n) = J with
increasing difficulty

⇒ keep local optimization in
well-behaved regions
often created by
smoothing/blurring J

intuition: non-convex
function might become
convex, but still preserve
global minima from [4]
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Curriculum Learning

first learn simple concept, then proceed to more complicated
ones
interpretation: series of J (i); cost functions with lower index
depend on simpler examples
successful in natural language processing and computer vision
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Coordinate Descent

concept: only update a subset of parameters at each optimization
step

example: k-means
objective function:

J(µ1, . . . , µk , S1, . . . , Sk) =
k∑

i=1

∑
xj∈Si

‖xj − µi‖2 (Si partition)

Lloyd’s algorithm:
1 Select k random cluster centers
2 repeat until convergence

1 assign each instance to closest center ⇒ optimize w.r.t. Si
2 compute centers of this new clusters ⇒ optimize w.r.t. µi

limitation: not applicable with strong dependencies between variables.
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Polyak Averaging

average over all locations visited by an
optimization algorithm

θ̂(t) =
1
t

t∑
i=1

θ(i)

⇒ strong convergence guarantees for some
problem classes
for neural networks: no guarantees, but
performs well in practice
common modification: exponentially
decaying running average

adapted from [8]
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