
ADAPTIVE
LEARNING RATE

-SRAVYA REDDY

1

Motivation

■ Basic methods have a fixed learning rate.

■ Challenges of using learning rate scheduler

– Dependency of type of model and problem.

– Same learning rate is applied on different parameters.

■ Solution: Adaptive learning rate.

■ Adaptive learning rate is a method by which the performance of the model on the training dataset
can be monitored by the learning algorithm and the learning rate can be adjusted in response.

2

AdaGrad

■ The AdaGrad (Adaptive Gradient) algorithm, individually adapts the learning rates of all
model parameters by scaling them inversely proportional to the square-root of the sum of all of
their historical squared values.

■ Adagrad uses a different learning rate for every parameter θi at every time step t.

■ It has an improved performance over SGD.

■ Mostly used in natural language processing and image recognition.

3

AdaGrad Algorithm
Require: Global learning rate

Require: Initial parameter
Require: small constant .(suggested value: 10-7)

 Initialize gradient accumulation variable r = 0

 while stopping criterion not met do

Sample a mini-batch of m examples from the training set {x(1), x(2), …, x(m)} with
corresponding targets y(i).

Compute gradient:

Accumulate squared gradient:

Compute update:

Apply update

 end while
4

RMS Prop

■ Problem with AdaGrad is its nature of radically diminishing learning rates and hence RMS Prop
algorithm.

■ RMSProp would deal with this problem and it is similar to gradient descent with momentum.

■ RMSprop as well divides the learning rate by an exponentially decaying average of squared
gradients.

■ Usual values for is 0.9 or 0.95.

■ RMSProp converges faster than AdaGrad to the convex bowl.

■ It is useful when dealing with sparse data or noisy data.

5

RMSProp Algorithm

Require: Global learning rate , decay rate

Require: Initial parameter
Require: small constant .

 Initialize gradient accumulation variable r = 0

 while stopping criterion not met do

Sample a mini-batch of m examples from the training set {x(1), x(2), …, x(m)} with corresponding
targets y(i).

Compute gradient:

Accumulate squared gradient:

Compute update:

Apply update

 end while

6

Adam

■ The name is derived from the phrase “Adaptive moments”.

■ It estimates the first moment and the second moment of the gradients and hence the
name of the method.

■ It is a combines the advantages of AdaGrad and RMSProp.

– Inspired from AdaGrad, it maintains the per-parameter learning rate that improves
performance of problems with sparse gradients.

– Inspired from RMSProp, it stores the exponential decay of average of the past
squared gradients.

8

Adam Algorithm
Require: step size (suggested default: 0.001)

Require: Exponential decay rates for moment estimates, ρ1 and ρ2 in [0, 1).(Suggested defaults: 0.9 and 0.999 respectively)

Require: Small constant used for numerical stabilization. (Suggested default: 10-8)

Require: Initial parameters .

 Initialize 1st and 2nd moment variables s = 0, r = 0

 Initialize time step t = 0

 while stopping criterion not met do

Sample a mini-batch of m examples from the training set {x(1), x(2), …, x(m)} with corresponding targets y(i).

Compute gradient:

Update biased first moment estimate:

Update biased second moment estimate:

Correct bias in first moment:

Correct bias in second moment:

Compute update:

Apply update:

 end while 9

Choosing the right optimization
algorithm
■ It is highly problem dependent.

■ If the input data is highly sparse than adaptive learning rates are recommended.

■ Adaptive models are used when training a deep or complex neural network or when
faster convergence is expected.

■ Adam is the mostly used optimizer.

10

Example
gradient descent (cyan), momentum (magenta), AdaGrad (white), RMSProp (green), Adam (blue).

11

Second-Order methods
■ It provides an addition curvature information of an objective function that adaptively

estimate the step-length of optimization trajectory in training phase of neural network.

■ This involves computing or approximating the matrix of second-order derivatives, i.e.
the Hessian, in the context of exact deterministic optimization.

■ While second-order methods often have significantly better convergence properties than
first-order methods, the size of typical problems prohibits their use in practice, as they
require quadratic storage and cubic computation time for each gradient update.

■ In all the methods here empirical risk is assumed to be

12

Newton’s Method

■ It is a widely used second-order gradient method.

■ It is a optimization method based on second order Taylor series expansion of J() at some point 0

after ignoring the higher orders.
■

■ This method added computational burden of calculation of inverse of the matrix and also not
recommended for a function with saddle points.

■ For non-quadratic surfaces, as long as H remains PD, Newton’s method can be applied.

■ Newton’s method would require the inversion of a k × k matrix—with computational
complexity of O(k3).

13

Newton’s method Algorithm

Require: Initial parameter

Require: Training set of m examples

 while stopping criterion not met do

Compute gradient:

Compute Hessian:

Compute Hessian inverse: H-1

Compute update: g

Apply update

 end while

14

Conjugate gradients

■ Conjugate gradients is a method to efficiently avoid the calculation of the inverse
Hessian by iteratively descending conjugate directions.

■ Motivation of this approach is line searches applied iteratively in the direction
associated with the gradient.

■ At each step, next step is made in the direction using

■ Two directions are conjugate if

■ Two methods of calculation are:

15

Conjugate gradient method

Require: Initial parameters 0

Require: Training set of m examples

 Initialize

 Initialize g0 = 0

 Initialize t = 1

 while stopping criterion not met do

Initialize the gradient gt = 0

Compute gradient:

Compute

Compute search direction:

Perform line search to find:

Apply update:

 end while
16

Training Optimization II
Optimization Strategies and Meta-Algorithms

Felix Müller

22.12.2020

1 / 26

Outline

1 Batch Normalization

2 Supervised Pretraining

3 Designing Models to Aid Optimization

4 Continuation Methods and Curriculum Learning

5 Coordinate Descent and Polyak Averaging

2 / 26

Outline

1 Batch Normalization

2 Supervised Pretraining

3 Designing Models to Aid Optimization

4 Continuation Methods and Curriculum Learning

5 Coordinate Descent and Polyak Averaging

3 / 26

Batch Normalization – Motivation

x w1 w2 wk ŷ...

ŷ = xw1w2 · · ·wk (all ∈ R)
gradient of w1 derived under the assumption that w2, . . . ,wk

fixed
BUT: update rule w ← w − εg
expected: ŷ decreases by εgTg (first-order Taylor
approximation)
actually: various higher-order effects, e.g. ε2g1g2

∏k
i=3 wi

4 / 26

Batch Normalization

problem: unwanted side-effects when applying gradient-descent to
networks with many layers

solutions
correction via higher-order methods
very small learning rate
batch normalization

batch normalization:
normalize activation values after each linear transformation
applicable to all layers except for the output layer

5 / 26

Batch Normalization

batch normalization
Input: m examples e(i) ∈ Rn (n nodes in layer)

1 calculate n means µj =
1
m

∑m
i=1 e

(i)
j

2 calculate n standard deviations σj =
√
δ + 1

m

∑m
i=1(e

(i)
j − µj)2

with a small positive δ (e.g. 10−8)

3 replace e(i) by e ′(i) = (
e
(i)
1 −µ1
σ1

,
e
(i)
2 −µ2
σ2

, . . . , e
(i)
n −µn

σn
)T

training: back-propagate through this normalization operation
⇒gradient will never propose changing mean or standard deviation
test: use averages over µ, σ collected during training

6 / 26

Batch Normalization – Example

x w1 w2 wk ŷ...

ŷ = xw1w2 · · ·wk

x ∼ N (0, 1)
linear transformation: xw1 ∼ N (0, σ2)

σ removed by batch normalization ⇒ xw1 ∼ N (0, 1)
⇒ only wk has an (linear) effect on the output value ŷ

7 / 26

Batch Normalization

batch normalization removes linear effects of hidden layers, but
preserves non-linear effects.

advantages [2]
learning becomes more stable
higher learning rates possible
models less sensitive to initialization values
regularization effect, similar to Dropout in some cases

⇒ faster and better training results

8 / 26

Outline

1 Batch Normalization

2 Supervised Pretraining

3 Designing Models to Aid Optimization

4 Continuation Methods and Curriculum Learning

5 Coordinate Descent and Polyak Averaging

9 / 26

Supervised Pretraining

sometimes training a model directly for a task is not possible

problems
hard to optimize model (e.g. very deep networks)
difficult task

goal: additional guidance for parameters in deep networks

10 / 26

Supervised Pretraining

greedy supervised pretraining
multiple trainings before actual
training
each trains only a subset of layers
assumption: pre-trained weights
provide guidance for hidden layer
parameters

adapted from [1, p. 324]

11 / 26

Supervised Pretraining

teacher student learning
shallow and wide network (teacher) aids training of deep and
thin network (student)
secondary objective: predict middle-layer values of teacher
network
⇒ guidance on how to use the hidden layers
example: student outperforms teacher on CIFAR-10 with 90%
less parameters [5]

12 / 26

Supervised Pretraining

transfer learning
train network on one task
use weights to initialize training on a similar task
assumption: networks learn some general abstraction that is
useful for many tasks

13 / 26

Outline

1 Batch Normalization

2 Supervised Pretraining

3 Designing Models to Aid Optimization

4 Continuation Methods and Curriculum Learning

5 Coordinate Descent and Polyak Averaging

14 / 26

Designing Models to Aid Optimization

an easy to optimize model family is more important than a powerful
optimization algorithm. [1, p. 326]

goal: local gradient information useful for reaching distant solution
⇒as much (near-)linearity as possible, e.g. ReLu instead of sigmoids

15 / 26

Designing Models to Aid Optimization

challenge: ensure useful gradient information on low layers in deep
networks

skip connections [6]
“highways” passing unchanged activation over several layers

auxiliary heads [7, 3]
additional nodes at hidden layers
trained to perform like output nodes, discarded after training

16 / 26

Outline

1 Batch Normalization

2 Supervised Pretraining

3 Designing Models to Aid Optimization

4 Continuation Methods and Curriculum Learning

5 Coordinate Descent and Polyak Averaging

17 / 26

Continuation Methods

generate series of cost
functions
J (0), J (1), . . . , J (n) = J with
increasing difficulty

⇒ keep local optimization in
well-behaved regions
often created by
smoothing/blurring J

intuition: non-convex
function might become
convex, but still preserve
global minima from [4]

18 / 26

Curriculum Learning

first learn simple concept, then proceed to more complicated
ones
interpretation: series of J (i); cost functions with lower index
depend on simpler examples
successful in natural language processing and computer vision

19 / 26

Outline

1 Batch Normalization

2 Supervised Pretraining

3 Designing Models to Aid Optimization

4 Continuation Methods and Curriculum Learning

5 Coordinate Descent and Polyak Averaging

20 / 26

Coordinate Descent

concept: only update a subset of parameters at each optimization
step

example: k-means
objective function:

J(µ1, . . . , µk , S1, . . . , Sk) =
k∑

i=1

∑
xj∈Si

‖xj − µi‖2 (Si partition)

Lloyd’s algorithm:
1 Select k random cluster centers
2 repeat until convergence

1 assign each instance to closest center ⇒ optimize w.r.t. Si
2 compute centers of this new clusters ⇒ optimize w.r.t. µi

limitation: not applicable with strong dependencies between variables.

21 / 26

Polyak Averaging

average over all locations visited by an
optimization algorithm

θ̂(t) =
1
t

t∑
i=1

θ(i)

⇒ strong convergence guarantees for some
problem classes
for neural networks: no guarantees, but
performs well in practice
common modification: exponentially
decaying running average

adapted from [8]

22 / 26

Outline

1 Batch Normalization

2 Supervised Pretraining

3 Designing Models to Aid Optimization

4 Continuation Methods and Curriculum Learning

5 Coordinate Descent and Polyak Averaging

23 / 26

References I

[1] Ian Goodfellow et al. Deep learning. Vol. 1. 2. MIT press
Cambridge, 2016.

[2] Sergey Ioffe and Christian Szegedy. “Batch normalization:
Accelerating deep network training by reducing internal covariate
shift”. In: arXiv preprint arXiv:1502.03167 (2015).

[3] Chen-Yu Lee et al. “Deeply-supervised nets”. In: Artificial
intelligence and statistics. 2015, pp. 562–570.

[4] Hossein Mobahi and John W Fisher III. “A theoretical analysis of
optimization by gaussian continuation.”. In: AAAI. Vol. 3.
Citeseer. 2015, p. 3.

[5] Adriana Romero et al. “Fitnets: Hints for thin deep nets”. In:
arXiv preprint arXiv:1412.6550 (2014).

24 / 26

References II

[6] Rupesh Kumar Srivastava, Klaus Greff, and
Jürgen Schmidhuber. “Highway networks”. In: arXiv preprint
arXiv:1505.00387 (2015).

[7] Christian Szegedy et al. “Going deeper with convolutions”. In:
Proceedings of the IEEE conference on computer vision and
pattern recognition. 2015, pp. 1–9.

[8] Varma and Das. Deep Learning. [accessed 2020-12-19]. 2018.
URL: https://srdas.github.io/DLBook.

[9] Haohan Wang and Bhiksha Raj. “A survey: Time travel in deep
learning space: An introduction to deep learning models and how
deep learning models evolved from the initial ideas”. In: (Oct.
2015).

25 / 26

https://srdas.github.io/DLBook

Whiteboard

26 / 26

	Slide 1
	Motivation
	AdaGrad
	AdaGrad Algorithm
	RMS Prop
	RMSProp Algorithm
	Adam
	Adam Algorithm
	Choosing the right optimization algorithm
	Example
	Second-Order methods
	Newton’s Method
	Newton’s method Algorithm
	Conjugate gradients
	Conjugate gradient method
	Batch Normalization
	Supervised Pretraining
	Designing Models to Aid Optimization
	Continuation Methods and Curriculum Learning
	Coordinate Descent and Polyak Averaging
	References

